Mathematical Programming

, Volume 78, Issue 2, pp 109–129 | Cite as

A polynomial time primal network simplex algorithm for minimum cost flows

  • James B. Orlin
Article

Abstract

Developing a polynomial time primal network simplex algorithm for the minimum cost flow problem has been a long standing open problem. In this paper, we develop one such algorithm that runs in O(min(n2m lognC, n2m2 logn)) time, wheren is the number of nodes in the network,m is the number of arcs, andC denotes the maximum absolute arc costs if arc costs are integer and ∞ otherwise. We first introduce a pseudopolynomial variant of the network simplex algorithm called the “premultiplier algorithm”. We then develop a cost-scaling version of the premultiplier algorithm that solves the minimum cost flow problem in O(min(nm lognC, nm2 logn)) pivots. With certain simple data structures, the average time per pivot can be shown to be O(n). We also show that the diameter of the network polytope is O(nm logn).

Keywords

Minimum cost flows Network simplex Polynomial time Simplex algorithm Premultipliers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.K. Ahuja, T.L. Magnanti and J.B. Orlin,Network Flows: Theory, Algorithms and Applications (Prentice Hall, Englewood Cliffs, NJ, 1993).Google Scholar
  2. [2]
    R.K. Ahuja, A.V. Goldberg, J.B. Orlin and R.E. Tarjan, Finding minimum-cost flows by double scaling,Mathematical Programming 53 (1992) 243–266.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    A.V. Goldberg and R.E. Tarjan, Solving minimum cost flow problem by successive approximation,Mathematics of Operations Research 15 (1990) 430–466.MATHMathSciNetGoogle Scholar
  4. [4]
    J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm,Operations Research 41 (1993) 338–350.MATHMathSciNetGoogle Scholar
  5. [5]
    N. Zadeh, A bad network problem for the simplex method and other minimum cost flow algorithms,Mathematical Programming 5 (1973) 255–266.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R.E. Tarjan, Efficiency of the primal network simplex algorithm for the minimum-cost circulation problem,Mathematics of Operations Research 16 (1991) 272–291.MATHMathSciNetGoogle Scholar
  7. [7]
    R.K. Ahuja and J.B. Orlin, The scaling network simplex algorithm,Operations Research 40, Supplement 1 (1992) S5-S13.MathSciNetGoogle Scholar
  8. [8]
    M. Akgul, A genuinely polynomial primal simplex algorithm for the assignment problem,Discrete Applied Mathematics 45 (1993) 93–115.CrossRefMathSciNetGoogle Scholar
  9. [9]
    M.S. Hung, A polynomial simplex method for the assignment problem,Operations Research 31 (1983) 595–600.MATHMathSciNetGoogle Scholar
  10. [10]
    J.B. Orlin, On the simplex algorithm for networks and generalized networks,Mathematical Programming Study 24 (1985) 166–178.MATHMathSciNetGoogle Scholar
  11. [11]
    P.T. Sokkalingam, P. Sharma and R.K. Ahuja, A new primal simplex algorithm for network flow problem, Unpublished manuscript, 1993; Presented at NETFLOW’93 at San Miniato, Italy.Google Scholar
  12. [12]
    M. Akgul, Shortest path and simplex method, Research Report, Department of Computer Science and Operations Research, North Carolina State University, Raleigh, NC, 1985.Google Scholar
  13. [13]
    R. Dial, F. Glover, D. Karney and D. Klingman, A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees,Networks 9 (1979) 215–248.MATHMathSciNetGoogle Scholar
  14. [14]
    D. Goldfarb, J. Hao and S. Kai, Efficient shortest path simplex algorithms,Operations Research 38 (1990) 624–628.MATHMathSciNetGoogle Scholar
  15. [15]
    A.V. Goldberg, M.D. Grigoriadis and R.E. Tarjan, Use of dynamic trees in a network simplex algorithm for the maximum flow problem,Mathematical Programming 50 (1991) 277–290.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    D. Goldfarb and J. Hao, A primal simplex algorithm that solves the maximum flow problem in at mostnm pivots and O(n 2m) time,Mathematical Programming 47 (1990) 353–365.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    D. Goldfarb and J. Hao, On strongly polynomial variants of the network simplex algorithm for the maximum flow problem,Operations Research Letters 10 (1991) 383–387.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    J.B. Orlin, Genuinely polynomial simplex and nonsimplex algorithms for the minimum cost flow problem, Technical Report No. 1615-84, Sloan School of Management, MIT, Cambridge, MA, 1984.Google Scholar
  19. [19]
    S.A. Plotkin and E. Tardos, Improved dual network simplex, in:Proceedings of the 1st ACM - SIAM Symposium on Discrete Algorithms (1990) 367–376.Google Scholar
  20. [20]
    J.B. Orlin, S.A. Plotkin and E. Tardos, Polynomial dual network simplex algorithms,Mathematical Programming 60 (1993) 255–276.CrossRefMathSciNetGoogle Scholar
  21. [21]
    R. Armstrong and Z. Jin, A strongly polynomial dual network simplex algorithm,Mathematical Programming 78 (1997) 131–148.CrossRefMathSciNetGoogle Scholar
  22. [22]
    D. Goldfarb and J. Hao, Polynomial simplex algorithms for the minimum cost network flow problem,Algorithmica 8 (1992) 145–160.CrossRefMathSciNetGoogle Scholar
  23. [23]
    R.E. Tarjan, Dynamic trees as search trees via Euler tours, applied to the network simplex algorithm,Mathematical Programming 78 (1997) 169–177.CrossRefMathSciNetGoogle Scholar
  24. [24]
    R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows, in: G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds.,Handbooks in Operations Research and Management Science, Vol. 1: Optimization (North-Holland, Amsterdam, 1989) 211–369.Google Scholar
  25. [25]
    É. Tardos, A strongly polynomial minimum cost circulation algorithm,Combinatorica 5 (1985) 247–255.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs,Operations Research 34 (1986) 250–256.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Dyer and A. Frieze, Random walks, totally unimodular matrices and a randomised dual simplex algorithm,Mathematical Programming 64 (1994) 1–16.CrossRefMathSciNetGoogle Scholar
  28. [28]
    W.H. Cunningham, A network simplex method,Mathematical Programming 11 (1976) 105–116.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Mathematical Programming Society, Inc 1997

Authors and Affiliations

  • James B. Orlin
    • 1
  1. 1.Sloan School of Management, MITCambridgeUSA

Personalised recommendations