Mathematical Programming

, Volume 28, Issue 2, pp 226–239 | Cite as

Pseudolinearity and efficiency

  • Kim Lin Chew
  • Eng Ung Choo


First order and second order characterizations of pseudolinear functions are derived. For a nonlinear programming problem involving pseudolinear functions only, it is proved that every efficient solution is properly efficient under some mild conditions.

Key words

Nonlinear Programming Pseudolinearity Characterizations Efficiency Proper Efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Avriel and S. Schaible, “Second order characterizations of pseudoconvex functions”,Mathematical Programming 14 (1978) 170–185.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Charnes and W.W. Cooper, “Programming with linear fractional functionals”,Naval Research Logistics Quarterly 19 (1962) 181–186.MathSciNetGoogle Scholar
  3. [3]
    E.U. Choo, “Multicriteria linear fractional programming”, Ph.D. thesis, University of British Columbia (1980).Google Scholar
  4. [4]
    E.U. Choo, “Proper efficiency and linear fractional vector maximum problem”,Operations Research, to appear.Google Scholar
  5. [5]
    G.B. Dantzig,Linear programming and extensions (Princeton University Press, Princeton, NJ, 1963).zbMATHGoogle Scholar
  6. [6]
    W.E. Diewert, M. Avriel and I. Zang, “Nine kinds of quasiconcavity and concavity”,Journal of Economic Theory 25 (1981) 397–420.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.G. Ecker and I. A. Kouada, “Finding all efficient extreme points for multiple objective linear programs”,Mathematical Programming 14 (1978) 249–261.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A.M. Geoffrion, “Proper efficiency and the theory of vector maximization”,Journal of Mathematical Analysis and Applications 22 (1968) 618–630.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    H. Isermann, “Proper efficiency and the linear vector maximum problem”,Operations Research 22 (1974) 189–191.zbMATHMathSciNetGoogle Scholar
  10. [10]
    S.H. Kornbluth and R.E. Steuer, “Multiple objective linear fractional programming”,Management Science 27 (1981) 1024–1039.zbMATHCrossRefGoogle Scholar
  11. [11]
    K.O. Kortanek and J.P. Evans, “Pseudo-concave programming and Lagrange regularity”,Operations Research 15 (1967) 882–892.zbMATHMathSciNetGoogle Scholar
  12. [12]
    O.L. Mangasarian, “Pseudo-convex functions”,Society for Industrial and Applied Mathematics Journal on Control 3 (1965) 281–290.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    O.L. Mangasarian,Nonlinear programming (McGraw-Hill, New York, 1969).zbMATHGoogle Scholar
  14. [14]
    J. Philip, “Algorithms for the vector maximization problem”,Mathematical Programming 2 (1972) 207–229.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Tigan, “Sur le problème de la programmation vectorielle fractionnaire”,Mathematica-Revue d'Analyse Numérique et de Théorie de l'Approximation 4 (1975) 99–103.zbMATHMathSciNetGoogle Scholar
  16. [16]
    R. Weber, “Pseudomonotonic multiobjective programming”, Discussion Paper, Institute of Operations Research, University of Saarland, W. Germany (August 1982).Google Scholar
  17. [17]
    P.L. Yu and M. Zeleny, “The set of all nondominated solutions in linear cases and a multicriteria simplex method”,Journal of Mathematical Analysis and Applications 49 (1975) 430–468.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Zeleny, Linear multiobjective programming (Springer, Berlin, 1974).zbMATHGoogle Scholar

Copyright information

© The Mathematical Programming Society Inc. 1984

Authors and Affiliations

  • Kim Lin Chew
    • 1
  • Eng Ung Choo
    • 2
  1. 1.National University of SingaporeSingapore
  2. 2.Simon Fraser UniversityCanada

Personalised recommendations