Advertisement

Hyperfine Interactions

, Volume 52, Issue 2, pp 97–106 | Cite as

Charge shift model for calculation of electric field gradient in tetragonal closed packed metals

  • H. C. Verma
  • B. Kumar
  • B. C. Rai
  • S. Chandra
Article
  • 19 Downloads

Abstract

The electronic charge distribution in tetragonal closed packed (tcp) metal is approximated by a collection of spherical charge clouds situated midway between the ions. The anisotropy of the charge distribution is parameterized in terms of a charge shift δ derivable from the lattice parameters and the elastic coefficients of the metal. The electric field gradient (EFG) in the metal can be obtained through lattice summations over the charges. Numerical calculations are made to obtain the EFG in pure indium and indium-based dilute impurity alloys. Fairly good agreement with the experiments is achieved.

Keywords

Electric Field Gladieut Probe Dependence Nuclear Site Charge Cloud Charge Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Bodenstedt and B. Perscheid, Hyp. Int. 5(1978)291.CrossRefADSGoogle Scholar
  2. [2]
    P. Raghavan, E.E. Kaufmann, R.S. Raghavan, E.J. Ansaldo and R.A. Naumann, Phys. Rev. B13(1976)2835.CrossRefADSGoogle Scholar
  3. [3]
    P. Heubes, G. Hempel, H. Ingwersen, R. Keitel, W. Klinger, W. Loeffler and W. Witthuhn,Int. Conf. on Hyperfine Interactions Studied in Nuclear Reactions and Decay, Uppsala, 1974; J. Christiansen, P. Heubes, R. Keitel, W. Loeffler, W. Sandner and W. Witthuhn, Z. Phys. B24(1976)177.Google Scholar
  4. [4]
    H.C. Verma and G.N. Rao, Phys. Lett. A82(1981)303.CrossRefADSGoogle Scholar
  5. [5]
    A. Maio, L. Hermans, M. Rots, G.N. Rao and R. Coussement, Hyp. Int. 11(1982)239.CrossRefADSGoogle Scholar
  6. [6]
    S.N. Gupta, G. Verma and H.C. Verma, Pramana, 23(1984)39.ADSGoogle Scholar
  7. [7]
    S. Chandra and H.C. Verma, Phys. Stat. Sol. (b) 131(1985)K73.Google Scholar
  8. [8]
    S. Chandra and H.C. Verma, Phys. Rev. B34(1986)1293.CrossRefADSGoogle Scholar
  9. [9]
    S. Chandra and H.C. Verma, Phys. Stat. Sol. (b) 145(1988)K1.Google Scholar
  10. [10]
    E. Bodenstedt, B. Perscheid and S. Nagal, Z. Phys. B63(1986)9.CrossRefADSGoogle Scholar
  11. [11]
    D.P. Verma, A. Yadav and H.C. Verma, Pramana 21(1983)357.ADSCrossRefGoogle Scholar
  12. [12]
    D.P. Verma, B. Kumar and H.C. Verma, Pramana 25(1985)211.ADSGoogle Scholar
  13. [13]
    R.W.G. Wycoff,Crystal Structures (Wiley, New York, 1948) p. 8.Google Scholar
  14. [14]
    American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963) pp. 2–54, table (2e-3A).Google Scholar
  15. [15]
    R.M. Sternheimer, Phys. Rev. 130(1963)1423.CrossRefADSGoogle Scholar
  16. [16]
    F.C. Thatcher and R.R. Hewitt, Phys. Rev. B1(1970)454.CrossRefADSGoogle Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1989

Authors and Affiliations

  • H. C. Verma
    • 1
  • B. Kumar
    • 1
  • B. C. Rai
    • 1
  • S. Chandra
    • 1
  1. 1.Department of PhysicsPatna Science CollegePatnaIndia

Personalised recommendations