Holz als Roh- und Werkstoff

, Volume 44, Issue 12, pp 453–457 | Cite as

Mechanical properties and dimensional stability of acetylated aspen flakeboard

  • J. A. Youngquist
  • R. M. Rowell
  • A. Krzysik
Forschung und Praxis


Aspen flakes, reacted with acetic anhydride to approximately 20% weight gain, were pressed into flakeboards using a watersoluble phenolic resin. Microphotographs revealed little penetration of the resin into the acetylated wood. Water sorption and thickness swelling are greatly reduced with acetylation; however, internal bond and moduli of rupture and elasticity were also significantly reduced as compared to control boards.


Density Profile Control Specimen Internal Bond Control Board Forest Prod 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Mechanische Eigenschaften und Dimensionsstabilität von acetylierten Pappel-Spanplatten


Pappelspänedie bis zu einer Gewichtszunahme von 20% mit Essigsäureanhydrit behandelt worden waren, wurden mit einem wasserlöslichen Phenolharz zu Spanplatten verpreßt. Mikrofotos zeigten eine nur geringe Eindringung des Harzes in die acetylierten Späne. Die Wasserabsorption und die Dickenquellung waren durch die Acetylierung stark reduziert. Aber auch die Querzugfestigkeit, die Beigefestigkeit und der Elastizitätsmodul waren, im Vergleich zu nicht behandelten Kontrollen, signifikant vermindert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American National Standards Institute (ANSI) 1979: American National Standard, mat-formed wood particleboard, ANSI A208.1Google Scholar
  2. American Society for Testing and Materials 1982: Standard methods of evaluating the properties of wood-based fiber and particle panel materials. ASTM D 1037-78. Philadelphia, PAGoogle Scholar
  3. Kelly, M. W. 1977: Critical literature review of relationships between processing parameters and physical properties of particleboard. USDA Forest Serv. Gen. Tech. Rep. FPL-10. Forest Prod. Lab., Madison, WIGoogle Scholar
  4. Laufenberg, T. L. 1986: Using gamma radiation to measure density gradients in reconstituted wood products. Forest Prod. J. 36:59–62Google Scholar
  5. Ranta, I.: May, H. A. 1978: Zur Messung von Rohdichteprofilen an Spanplatten mittels Gammastrahlen. Holz Roh-Werkstoff 36:467–474Google Scholar
  6. River, B.H.; Gillespie, R.H.; Baker, Andrew J. 1981:Accelerated aging of phenolic bonded hardboards and flakeboards. USDA Forest Serv. Res. Pap. FPL 393. Forest Prod. Lab., Madison, WIGoogle Scholar
  7. Rowell, R. M. 1982: Distribution of acetyl groups in southern pine reacted with acetic anhydride. Wood Sci. 15:172–182Google Scholar
  8. Rowell, R.M. 1984: Chemistry of solid wood. R.M. Rowell (Ed.): Advances in chemistry, series No. 207, Chap. 4: Penetration and reactivity of cell wall components. Am. Chem. Soc. 175–210Google Scholar
  9. Rowell, R.M.; Tillman, A.-M.; Liu, Z. 1986: Dimensional stabilization of flakeboard by chemical modification. Wood. Sci. Technol.20:83–95CrossRefGoogle Scholar
  10. Youngquist, J.A.; Krzysik, A.; Rowell, R.M. 1986: Dimensional stability of acetylated aspen flakeboard. Wood Fiber Sci. 18:90–98Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. A. Youngquist
    • 1
  • R. M. Rowell
    • 1
  • A. Krzysik
    • 2
  1. 1.Forest Service, Forest Products LaboratoryU.S. Department of AgricultureMadison
  2. 2.University of AgricultureWarsawPoland

Personalised recommendations