Advertisement

Mitochondrial DNA of the extinct quagga: Relatedness and extent of postmortem change

  • Russell G. Higuchi
  • Lisa A. Wrischnik
  • Elizabeth Oakes
  • Matthew George
  • Benton Tong
  • Allan C. Wilson
Article

Summary

Sequences are reported for portions of two mitochondrial genes from a domestic horse and a plains zebra and compared to those published for a quagga and a mountain zebra. The extinct quagga and plains zebra sequences are identical at all silent sites, whereas the horsse sequence differs from both of them by 11 silent substitutions. Postmortem changes in quagga DNA may account for the two coding substitutions between the quagga and plains zebra sequences. The hypothesis that the closest relative of the quagga is the domestic horse receives no support from these data. From the extent of sequence divergence between horse and zebra mitochondrial DNAs (mtDNAs), as well as from information about the fossil record, we estimate that the mean rate of mtDNA divergence inEquus is similar to that in other mammals, i.e., roughly 2% per million years.

Key words

Ancient DNA Base sequences Tree analysis Postmortem change Cytochrome oxidase NADH dehydrogenase Zebras Horse Fossil record Molecular clock 

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRefGoogle Scholar
  2. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717PubMedCrossRefGoogle Scholar
  3. Avise JC (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. Philos Trans R Soc Lond B Biol Sci 312:325–342PubMedGoogle Scholar
  4. Bennett DK (1980) Stripes do not a zebra make, part I: a cladistic analysis ofEquus. Syst Zool 29:272–287CrossRefGoogle Scholar
  5. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180PubMedCrossRefGoogle Scholar
  6. Brown TA, Davies RW, Ray JA, Waring RB, Scazzocchio C (1983) The mitochondrial genome ofAspergillus nidulans contains reading frames homologous to the human URFs 1 and 4. EMBO J 2:427–435PubMedGoogle Scholar
  7. Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland MA, pp 62–88Google Scholar
  8. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239PubMedCrossRefGoogle Scholar
  9. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271PubMedCrossRefGoogle Scholar
  10. de Bruijn MHL (1983)Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature 304: 234–241PubMedCrossRefGoogle Scholar
  11. Doran GH, Dickel DN, Ballinger WE Jr, Agee OF, Laipis PJ, Hauswirth WW (1986) Anatomical, cellular and molecular analysis of 8,000-yr-old human brain tissue from the Windover archaeological site. Nature 323:803–806PubMedCrossRefGoogle Scholar
  12. Eisenmann V (1979) Caractères évolutifs et phylogénie du genreEquus (Mammalia, Perissodactyla). C R Acad Sci Paris, Ser D 288:497–500Google Scholar
  13. Eisenmann V (1980) Les chevaux (Equus sensu lato (Mammalia, Perissodactyla)) fossiles et actuels: crânes et dents jugales supérieures, Cah Paléont, CNRS ed. Paris, pp 1–186Google Scholar
  14. Eisenmann V (1985) Le couagga: un zèbre aux origines douteuses. La Recherche (Paris) 16(163):254–256Google Scholar
  15. George M Jr, Ryder OA (1986) Mitochondrial DNA evolution in the genusEquus. Mol Biol Evol 3:535–546PubMedGoogle Scholar
  16. Gray AP (1972) Mammalian hybrids. Commonwealth Agricultural Bureaux, Farnham Royal, Slough, England, pp 94–113Google Scholar
  17. Grosskopf R, Feldmann H (1981) Analysis of a DNA segment from rat liver mitochondria containing the genes for the cytochrome oxidase subunits I, II and III, ATPase subunit 6, and several tRNA genes. Curr Genet 4:151–158CrossRefGoogle Scholar
  18. Groves CP, Willoughby DP (1981) Studies on the taxonomy and phylogeny of the genusEquus. 1. Subgeneric classification of the recent species. Mammalia 45:321–354Google Scholar
  19. Gyllensten U, Wilson AC (1987) Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genet Res 49:25–29PubMedCrossRefGoogle Scholar
  20. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284PubMedCrossRefGoogle Scholar
  21. Johnson PH, Olson CB, Goodman M (1985) Isolation and characterization of deoxyribonucleic acid from tissue of the woolly mammoth,Mammuthus primigenius. Comp Biochem Physiol 81B:1045–1051Google Scholar
  22. Lindahl T (1982) DNA repair enzymes. Ann Rev Biochem 51: 61–87PubMedCrossRefGoogle Scholar
  23. Lowenstein JM, Ryder OA (1985) Immunological systematics of the extinct quagga (Equidae). Experientia 41:1192–1193PubMedCrossRefGoogle Scholar
  24. Pääbo S (1985) Molecular cloning of ancient Egyptian mummy DNA. Nature 314:644–645PubMedCrossRefGoogle Scholar
  25. Pääbo S (1986) Molecular genetic investigations of ancient human remains. Cold Spring Harbor Symp Quant Biol 51:441–446PubMedGoogle Scholar
  26. Radinsky L (1984) Ontogeny and phylogeny in horse skull evolution. Evolution 38:1–15CrossRefGoogle Scholar
  27. Rau RE (1974) Revised list of the preserved material of the extinct Cape Colony quagga,Equus quagga quagga (Gmelin). Ann S Afr Mus 65(2):41–87Google Scholar
  28. Roe BA, Ma D-P, Wilson RK, Wong JF-H (1985) The complete nucleotide sequence of theXenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774PubMedGoogle Scholar
  29. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76CrossRefGoogle Scholar
  30. Saccone C, Cantatore P, Gadaleta G, Gallerani R, Lanave C, Pepe G, Kroon AM (1981) The nucleotide sequence of the large ribosomal RNA gene and the adjacent tRNA genes from rat mitochondria. Nucleic Acids Res 9:4139–4148PubMedCrossRefGoogle Scholar
  31. Shields GF, Wilson AC (1987) Calibration of mitochondrial DNA evolution in geese. J Mol Evol 24:212–217PubMedCrossRefGoogle Scholar
  32. Simpson GG (1953) The major features of evolution Columbia Univ Press, New York, pp 259–265Google Scholar
  33. Tegelström H (1987) Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus). J Mol Evol 24:218–227PubMedCrossRefGoogle Scholar
  34. Waring RB, Brown TA, Ray JA, Scazzocchio C, Davies RW (1984) Three variant introns of the same general class in the mitochondrial gene for cytochrome oxidase subunit 1 inAspergillus nidulans. EMBO J 3:2121–2128PubMedGoogle Scholar
  35. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Russell G. Higuchi
    • 1
  • Lisa A. Wrischnik
    • 1
  • Elizabeth Oakes
    • 1
  • Matthew George
    • 2
  • Benton Tong
    • 2
  • Allan C. Wilson
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Research DepartmentZoological Society of San DiegoSan DiegoUSA

Personalised recommendations