Journal of Molecular Evolution

, Volume 28, Issue 6, pp 497–516 | Cite as

The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates

  • G. Gadaleta
  • G. Pepe
  • G. De Candia
  • C. Quagliariello
  • E. Sbisa
  • C. Saccone
Article

Summary

This paper reports the nucleotide sequence of rat mitochondrial DNA, only the fourth mammalian mitochondrial genome to be completely sequenced. Extensive comparative studies performed with similar genomes from other organisms revealed a number of interesting features.
  1. 1)

    Messenger RNA genes: the codon strategy is mainly dictated by the base compositional constraints of the corresponding codegenic DNA strand. The usage of the initiation and termination codons follows well-established rules. In general the canonical initiator, ATG, and terminators, TAA and TAG (in rat, only TAA), are always present when there is gene overlapping or when the mRNAs possess untranslated nucleotides at the 5′ or 3′ ends.

     
  2. 2)

    Transfer RNA genes: a number of features suggest the peculiar evolutionary behavior of this class of genes and confirm their role in the duplication and rearrangement processes that took place in the evolution of the animal mitochondrial genome.

     
  3. 3)

    Ribosomal RNA genes: accurate sequence analysis revealed a number of significant examples of complementarity between ribosomal and messenger RNAs. This suggests that they might uplay an important role in the regulation of mitochondrial translation and transcription mechanisms.

     

The properties revealed by our work shed new light on the organization and evolution of the vertebrate mitochondrial genome and more importantly open up the way to clearly aimed experimental studies of the regulatory mechanisms in mitochondria

Key words

Evolution of animal mitochondrial DNA Complete genome sequence Regulatory signals Mitochondrial tRNA evolution Initiation and termination codons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akins RA, Lambowitz AM (1987) A protein required for splicing group I introns inNeurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell 50:331–345PubMedCrossRefGoogle Scholar
  2. Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93:93–145PubMedGoogle Scholar
  3. Attimonelli A, Lanave C, Sbisà E, Preparata G, Saccone C (1985) Multisequence comparisons in protein coding genes. Search for functional constraints. Cell Biophys 7:237–250Google Scholar
  4. Barnes WM, Bevan M, Son PH (1983) Kilo-sequencing: creation of an ordered nest of asymmetric deletions across a large target sequence carried on phage M13. Methods Enzymol 101: 98–122PubMedGoogle Scholar
  5. Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282:184–194CrossRefGoogle Scholar
  6. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523PubMedCrossRefGoogle Scholar
  7. Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisá E (1986) Structural conservation and variation in the D-loop containing region of vertebrate mitochondrial DNA. J Mol Biol 192:503–511PubMedCrossRefGoogle Scholar
  8. Cantatore P, Saccone C (1987) Organization structure and evolution of mammalian mitochondrial genes. Int Rev Cytol 108:149–206PubMedCrossRefGoogle Scholar
  9. Cantatore P, De Benedetto C, Gadaleta G, Gallerani R, Kroon AM. Holtrop M, Lanave C, Pepe G, Quagliariello C, Saccone C, Sbisà E (1982) The nucleotide sequences of several tRNA genes from rat mitochondria: common features and relatedness to homologous species. Nucleic Acids Res 10:3279–3289PubMedCrossRefGoogle Scholar
  10. Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC (1987a) Duplication and remoulding of tRNA genes during evolutionary rearrangement of mitochondrial genomes. Nature 329:853–855PubMedCrossRefGoogle Scholar
  11. Cantatore P, Roberti M, Morisco P, Rainaldi G, Gadaleta MN, Saccone C (1987b) A novel gene order in theParacentrotus lividus mitochondrial genome. Gene 53:41–54PubMedCrossRefGoogle Scholar
  12. Chambers I, Harrison PR (1987) A new puzzle in selenoprotein biosynthesis: selenocysteine seems to be encoded by the ‘stop” codon UGA. Trends Biochem Sci 12:255–256CrossRefGoogle Scholar
  13. Chang DD, Clayton DA (1986) Precise assignment of the heavy-strand promoter of mouse mitochondrial DNA: cognate start sites are not required for transcriptional initiation. Mol Cell Biol 6:3262–3267PubMedGoogle Scholar
  14. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecules ofDrosophila yakuba: nucleotide sequence, gene organization and genetic code. J Mol Evol 22:252–271PubMedCrossRefGoogle Scholar
  15. Daniels GR, Deininger PL (1985) Repeat sequence families derived from mammalian tRNA genes. Nature 317:819–822PubMedCrossRefGoogle Scholar
  16. Dunon-Bluteau D, Brun G (1986) The secondary structures of theXenopus laevis and human mitochondrial small ribosomal subunit RNA are similar. FEBS Lett 198:333–338PubMedCrossRefGoogle Scholar
  17. Gaines G, Rossi C, Attardi G (1987) The excised leader of human cytochrome c oxidase subunit I mRNA which contains the origin of mitochondrial DNA light-strand synthesis accumulates in mitochondria and is polyadenylated. Mol Cell Biol 7:925–931PubMedGoogle Scholar
  18. Glotz C, Zwieb C, Brimacombe R, Edwards K, Kossel H (1981) Secondary structure of the large subunit ribosomal RNA fromEscherichia coli, Zea mays chloroplast, and human and mouse mitochondrial ribosomes. Nucleic Acids Res 9:3287–3306PubMedCrossRefGoogle Scholar
  19. Gortz G, Feldmann H (1982) Nucleotide sequence of the cytochrome b gene and adjacent regions from rat liver mitochondrial DNA. Curr Genet 5:221–225CrossRefGoogle Scholar
  20. Gouy M, Gautier C, Attimonelli M, Lanave C, Di Paola G (1985) ACNUC—a portable retrieval system for nucleic acid sequence, database: logical and physical designs and usage. CABIOS 1:166–172Google Scholar
  21. Himeno H, Masaki H, Kawai T, Ohta T, Kumagai I, Miura K-I, Watanabe K (1987) Unusual genetic code and a novel gene structure for tRNA ser(AGY) in starfish mitochondrial DNA. Gene 56:219–230PubMedCrossRefGoogle Scholar
  22. Hixson JE, Brown WM (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution and phylogenetic implications, Mol Biol Evol 3:1–18PubMedGoogle Scholar
  23. Horowitz S, Gorovsky MA (1985) An unusual genetic code in nuclear gene ofTetrahymena. Proc Natl Acad Sci USA 82: 2452–2455PubMedCrossRefGoogle Scholar
  24. Koike K, Kobayashi M, Taira M, Yoshida E, Imai M (1982) Nucleotide sequence and evolution of the cytochrome b gene containing the ochre termination codon from the mitochondria. Gene 20:177–185PubMedCrossRefGoogle Scholar
  25. Kuntzel H, Kochel G (1981) Evolution of rRNA and origin of mitochondria. Nature 293:751–755PubMedCrossRefGoogle Scholar
  26. Lanave C, Preparata G, Saccone C (1985) Mammalian genes as molecular clocks? J Mol Evol 21:346–350CrossRefGoogle Scholar
  27. Lawrence CB, McDonnell DP, Ramsey WJ (1985) Analysis of repetitive sequence elements containing tRNA-like sequences. Nucleic Acids Res 13:4239–4252PubMedCrossRefGoogle Scholar
  28. Maly P, Brimacombe R (1983) Refined secondary structure models for the 16S and 23S ribosomal RNA ofEscherichia coli. Nucleic Acids Res 11:7263–7286PubMedCrossRefGoogle Scholar
  29. Montoya J, Ojala D, Attardi G (1981) Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290:465–470PubMedCrossRefGoogle Scholar
  30. Ojala D, Merkel C, Gelfand R, Attardi G (1980) The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 22:393–403PubMedCrossRefGoogle Scholar
  31. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474PubMedCrossRefGoogle Scholar
  32. Papanicolau C, Gouy M, Ninio J (1984) An energy model that predicts the correct folding of both the tRNA and the 5S RNA molecules. Nucleic Acids Res 12:31–44CrossRefGoogle Scholar
  33. Pepe G, Holtrop M, Gadaleta G, Kroon AM, Cantatore P, Gallerani R, De Benedetto C, Quagliariello C, Sbisà E, Saccone C (1983) Nonrandom patterns of nucleotide substitutions and codon strategy in the mammalian genes coding for identified and unidenfitied reading frames. Biochem Int 6:553–563PubMedGoogle Scholar
  34. Roe BA, Ma D-P, Wilson RK, Wong JF-H (1985) The complete nucleotide sequence of theXenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774PubMedGoogle Scholar
  35. Saccone C, Cantatore P, Gadaleta G, Gallerani R, Lanave C, Pepe G, Kroon AM (1981) The nucleotide sequence of the large ribosomal RNA gene and adjacent tRNA genes from rat mitochondria. Nucleic Acids Res 9:4139–4147PubMedCrossRefGoogle Scholar
  36. Saccone C, Attimonelli M, Sbisà E (1985) Primary and higher order structural analysis of animal mitochondrial DNA. In: Quagliariello E (ed) Achievements and perspectives of mitochondrial research, vol II: biogenesis. Elsevier Science Publishers BV (Biomedical Division). Amsterdam, The Netherlands, p 37Google Scholar
  37. Saccone C, Attimonelli M, Sbisà E (1987) Structural elements highly preserved during the evolution of the D-loop containing region in vertebrate mitochondrial DNA. J Mol Evol 26: 205–211PubMedCrossRefGoogle Scholar
  38. Sanger F, Coulson AR, Barrell BG, Smith AJH, Roe BA (1980) Cloning in single stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143:161–178PubMedCrossRefGoogle Scholar
  39. Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38PubMedCrossRefGoogle Scholar
  40. Smith TF, Waterman MS, Burks C (1985) The statistical distribution of nucleic acid similarities. Nucleic Acids Res 13: 645–656PubMedCrossRefGoogle Scholar
  41. Spritzl M, Hartman T, Meissner F, Moll J, Vorderwulbecke T (1987) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 15:r53-r188Google Scholar
  42. Stormo GD, Schneider TD, Gold LM (1982) Characterization of translational sites inE. coli. Nucleic Acids Res 10:2971–2996PubMedCrossRefGoogle Scholar
  43. Trifonov EN (1987) Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16S rRNA nucleotide sequences. J Mol Biol 194:643–652PubMedCrossRefGoogle Scholar
  44. Weiner AM, Maizels N (1988) tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implication for the origin of protein synthesis. Proc Natl Acad Sci USA (in press)Google Scholar
  45. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF (1988) Reading frames switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis inEscherichia coli. EMBO J 7:1503–1507PubMedGoogle Scholar
  46. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowki KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400Google Scholar
  47. Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA (1987) Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci USA 84:1324–1328PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • G. Gadaleta
    • 1
  • G. Pepe
    • 1
  • G. De Candia
    • 1
  • C. Quagliariello
    • 2
  • E. Sbisa
    • 1
  • C. Saccone
    • 1
  1. 1.Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR Bari, Dipartimento di Biochimica e Biologia MolecolareUniversità di BariItaly
  2. 2.Dipartimento di Biologia CellulareUniversità della CalabriaCosenzaItaly

Personalised recommendations