Journal of Molecular Evolution

, Volume 29, Issue 6, pp 513–525 | Cite as

Population dynamics in a spin-glass model of chemical evolution

  • C. Amitrano
  • L. Peliti
  • M. Saber


We introduce a simple model describing the evolution of a population of information-carrying macromolecules. We discuss the asymptotic dependence of the variability of the population on different parameters, representing the severity or the fluctuations of the environment. We show the existence of a transition separating a neutralist evolutionary regime from a trapped one. We investigate the dependence of the evolutionary behavior of the population on the correlation properties of the fitness landscape.

Key words

Prebiotic Self-organization Spin-glass Neutralism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott LF (1988) A model of autocatalytic replication. J Mol Evol 27:114–120PubMedCrossRefGoogle Scholar
  2. Amitrano C, Peliti L, Saber M (1988) Neutralism and adaptation in a simple model of molecular evolution. C R Acad Sci Paris III 307:803–806Google Scholar
  3. Anderson PW (1983) Suggested model for prebiotic evolution: the use of chaos. Proc Natl Acad Sci USA 80:3386–3390PubMedCrossRefGoogle Scholar
  4. Campbell IA, Flesselles JM, Jullien R, Botet R (1987) Random walks on a hypercube and spin glass relaxation. J Phys C: Solid State Physics 20:L47-L51CrossRefGoogle Scholar
  5. Derrida B (1980) Random-energy model: limit of a family of disordered models. Phys Rev Lett 45:79–82CrossRefGoogle Scholar
  6. Derrida B (1981) Random-energy model: an exactly solvable model of disordered systems. Phys Rev B24:2613–2626CrossRefGoogle Scholar
  7. Dyson FJ (1985) Orgins of life. Cambridge University Press, New YorkGoogle Scholar
  8. Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, BerlinGoogle Scholar
  9. Fitch WM, Markowitz E (1970) An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem Genet 4:579–593PubMedCrossRefGoogle Scholar
  10. Gaunt DS, Sykes MF, Ruskin H (1976) Percolation processes in d-dimensions. J Phys A: Math Gen 19:1899–1911CrossRefGoogle Scholar
  11. Kauffman SA (1988) Origins of order in evolution: self-organization and selection. In: Livi R, Ruffo S, Ciliberto S, Buiatti M (eds) Chaos and complexity. World Scientific, Singapore, pp 349–387Google Scholar
  12. Kauffman SA (1989) Adaptation on rugged fitness landscapes. In: Stein D (ed) Complex systems, SFI Studies in the Science of Complexity. Addison-Wesley, Reading, MA, pp 527–617Google Scholar
  13. Kauffman SA, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128: 11–45PubMedGoogle Scholar
  14. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, New YorkGoogle Scholar
  15. Küppers B-O (1983) Molecular theory of evolution. Springer, BerlinGoogle Scholar
  16. Mézard M, Parisi G, Virasoro MA (1987) Spin glass theory and beyond. World Scientific, SingaporeGoogle Scholar
  17. Orgel LE (1979) Selectionin vitro. Proc Roy Soc London B 205:435–442CrossRefGoogle Scholar
  18. Peliti L (1989) Biogenesis: complexity and disorder. In: Peliti L (ed) Disordered systems and biological models. World Scientific, Singapore, pp 163–176Google Scholar
  19. Rokhsar DS, Anderson PW, Stein DL (1986) Self-organization in prebiological systems: simulations of a model for the origin of genetic information. J Mol Evol 23:119–126PubMedCrossRefGoogle Scholar
  20. Ruelle D (1987) A mathematical reformulation of Derrida’s REM and GREM. Commun Math Phys 108:225–239CrossRefGoogle Scholar
  21. Toulouse G (1977) Theory of the frustration effect in spin glasses: I. Commun Phys 2:115–119Google Scholar
  22. Tsallis C (1989) Biogenesis: autocatalytic polymerization of DNA-like molecules as a critical phenomenon. In: Peliti L (ed) Disordered systems and biological models. World Scientific, Singapore, pp 125–162Google Scholar
  23. Tsallis C, Ferreira R (1983) On the origin of self-replicating information-containing polymers from oligomeric mixtures. Phys Lett 99A:461–463Google Scholar
  24. Zhang YC, Serva M, Polikarpov M (1989) Diffusion-reproduction processes. J. Stat Phys (in press)Google Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • C. Amitrano
    • 1
  • L. Peliti
    • 1
  • M. Saber
    • 1
  1. 1.Dipartimento di Scienze FisicheUniversità di NapoliNapoliItaly

Personalised recommendations