Advertisement

Journal of Molecular Evolution

, Volume 29, Issue 5, pp 422–428 | Cite as

Glutamine synthetase II inRhizobium: Reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes

  • Robert G. Shatters
  • Michael L. Kahn
Article

Summary

We have determined the DNA sequence of aRhizobium meliloti gene that encodes glutamine synthetase II (GSII). The deduced amino acid sequence was compared to that ofBradyrhizobium japonicum GSII and those of various plant and mammalian glutamine synthetases (GS) in order to evaluate a proposal that the gene for this enzyme was recently transferred from plants to their symbiotic bacteria. There is 83.6% identity between theR. meliloti andB. japonicum proteins. The bacterial GSII proteins average 42.5% identity with the plant GS proteins and 41.8% identity with their mammalian counterparts. The plant proteins average 53.7% identity with the mammalian proteins. Thus, the GS proteins are highly conserved and the divergence of these proteins is proportional to the phylogenetic divergence of the organisms from which the sequences were determined. No transfer of genes across large taxonomic gaps is needed to explain the presence of GSII in these bacteria.

Key words

Glutamine synthetase Rhizobium Bradyrhizobium Protein evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almassy RJ, Janson CA, Hamlin R, Xuong N-H, Eisenberg D (1986) Novel subunit-subunit interactions in the structure of glutamine synthetase. Nature (London) 323:304–309CrossRefGoogle Scholar
  2. Benson DR, Noridge NA, Tsai YL, Taylor DA (1988). Enzymes of ammonia assimilation in hyphae and vesicles ofFrankia sp. strain CpII. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after. Proceedings of the 7th Intenational Congress on Nitrogen Fixation. Gustav Fischer, New York, p 693Google Scholar
  3. Carlson TA, Chelm BK (1986) Apparent eukaryotic origin of glutamine synthetase II from the bacteriumBradyrhizobium japonicum. Nature (London) 322:568–570CrossRefGoogle Scholar
  4. Carlson TA, Martin GB, Chelm BK (1987) Differntial transcription of the two glutamine synthetase genes ofBradyrhizobium japonicum J Bacteriol 169:5861–5866PubMedGoogle Scholar
  5. Colombo G, Villafranca JJ (1986) Amino acid sequence ofEscherichia coli glutamine synthetase deduced from the DNA nucleotide sequence. J Biol Chem 261:10587–10591PubMedGoogle Scholar
  6. Crepet WL, Taylor DW (1985) The diversification of the Leguminosae: first fossil evidence of the Mimosoideae and Papilionoideae.Science 228:1087–1089CrossRefPubMedGoogle Scholar
  7. Darrow RA (1980) Role of glutamine synthetase in nitrogen fixation. In: Mora J, Palacios R (eds) Glutamine metabolism, enzymology, and regulation. Academic Press, New York, pp 139–166Google Scholar
  8. Darrow RA, Knotts RR (1977) Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochem Biophys Res Commun 78:554–559PubMedGoogle Scholar
  9. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12(1):387–395PubMedCrossRefGoogle Scholar
  10. Doolittle RF (1986) Of urfs and orfs: a primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley CAGoogle Scholar
  11. Edmands J, Noridge NA, Benson DR (1987) The actinorhizal root-nodule symbiontFrankia sp. strain CpI1 has two glutamine synthetases. Proc Natl Acad Sci USA 84:6126–6130PubMedCrossRefGoogle Scholar
  12. Egelhoff TT, Fisher RF, Jacobs TW, Mulligan JT, Long SR (1985) Nucleotide sequence ofRhizobium meliloti 1021 nodulation genes:nodD is read divergently fromnodABC. DNA 4:241–248PubMedGoogle Scholar
  13. Fuchs RL, Keister DL (1980) Identification of two glutamine synthetases inAgrobacterium. J Bacteriol 141:996–998PubMedGoogle Scholar
  14. Fuhrmann M, Hennecke H (1984)Rhizobium japonicum nitrogenase Fe protein gene (nifH). J Bacteriol 158:1005–1011PubMedGoogle Scholar
  15. Gebhardt C, Oliver JE, Forde BG, Saarelainen R, Miflin BJ (1986) Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves ofPhaseolus vulgaris. EMBO J 5:1429–1435PubMedGoogle Scholar
  16. Gibbs CS, Campbell KE, Wilson RH (1987) Sequence of a human glutamine synthetase gene. Nucleic Acids Res 15:6293PubMedCrossRefGoogle Scholar
  17. Gussin GN, Ronson CW, Ausubel FM (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20:567–591PubMedCrossRefGoogle Scholar
  18. Hasegawa M, Iida Y, Yano T-A, Takaiwa F, Iwabuchi M (1985) Phylogenetic relationships among eukaryotic kingdoms inferred from ribosomal RNA sequences. J Mol Evol 22:32–38PubMedCrossRefGoogle Scholar
  19. Hayward BE, Hussain A, Wilson RH, Lyons A, Woodcock V, McIntosh B, Harris TJR (1986) The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster. Nucleic Acids Res 14:999–1007PubMedCrossRefGoogle Scholar
  20. Hennecke HK, Kaluza B, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA inRhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348CrossRefGoogle Scholar
  21. Kimura M, Ohta T (1973) Eukaryotes-prokaryotes divergence estimated by 5S RNA sequences. Nature (New Biol) 243:199–200CrossRefGoogle Scholar
  22. Lim G, Burton JC (1983) Nodulation status of the Leguminosae. In: Broughton WJ (ed) Nitrogen fixation, vol 2.Rhizobium. Clarendon, London, pp 1–34Google Scholar
  23. McKenna MG (1975) Toward a phylogenetic classification of the Mammalia. In: Lucket WP, Szalay FS (eds) Phylogeny of the primates, Plenum Press, New York, p 21–37Google Scholar
  24. Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86PubMedCrossRefGoogle Scholar
  25. Pustell J, Kafatos FC (1982) A convenient and adaptable package of DNA sequence analysis programs. Nucleic Acids Res 10:51–59PubMedCrossRefGoogle Scholar
  26. Rossbach S, Schell, J, de Bruijn FJ (1988) Cloning and analysis ofAgrobacterium tumefaciens C58 loci involved in glutamine biosynthesis: neither theglnA (GSI) nor theglnII (GSII) gene plays a special role in virulence. Mol Gen Genet 212:38–47CrossRefGoogle Scholar
  27. Ruvkun GB, Ausubel FM, (1980) Interspecies homology of nitrogenase genes. Proc Natl Acad Sci USA 77:191–195PubMedCrossRefGoogle Scholar
  28. Scott KF (1986) Conserved nodulation genes from the nonlegume symbiontBradyrhizobium sp. (Parasponia). Nucleic Acids Res 14:2905–2919PubMedCrossRefGoogle Scholar
  29. Somerville JE, Kahn ML (1983) Cloning of the glutamine synthetase I gene fromRhizobium meliloti. J Bacteriol 156:168–176PubMedGoogle Scholar
  30. Somerville JE, Shatters RG, Kahn ML (1989) Isolation, characterization and complementation ofRhizobium meliloti 104A14 mutants that lack glutamine synthetase II activity. J Bacteriol (in press)Google Scholar
  31. Stadtman ER, Ginsburg A (1974) The glutamine synthetase ofEscherichia coli: structure and control. In: Boyer PD (ed) The enzymes 10:755–807Google Scholar
  32. Tingey SV, Coruzzi GM (1987) Glutamine synthetase ofNicotiana plumbaginifolia. Plant Physiol 84:366–373PubMedCrossRefGoogle Scholar
  33. Tingey SV, Walker EL, Coruzzi GM (1987) Glutamine synthetase genes of pea encode distinct polypeptides which are differentially expressed in leaves, roots and nodules. EMBO J 6:1–9PubMedGoogle Scholar
  34. Tischer E, DasSarma S, Goodman HM (1986) Nucleotide sequence of an alfalfa glutamine synthetase gene. Mol Gen Genet 203:221–229CrossRefGoogle Scholar
  35. Torok I, Kondorosi A (1981) Nucleotide sequence of theRhizobium meliloti nitrogenase reductase (nifH) gene. Nucleic Acids Res 9:5711–5723PubMedCrossRefGoogle Scholar
  36. Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447PubMedCrossRefGoogle Scholar
  37. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • Robert G. Shatters
    • 1
  • Michael L. Kahn
    • 2
    • 3
  1. 1.Program in Genetics and Cell BiologyWashington State UniversityPullmanUSA
  2. 2.Institute of Biological ChemistryWashington State UniversityPullmanUSA
  3. 3.Department of MicrobiologyWashington State UniversityPullmanUSA

Personalised recommendations