Advertisement

Journal of Molecular Evolution

, Volume 29, Issue 5, pp 407–411 | Cite as

DNA microenvironments and the molecular clock

  • C. Saccone
  • G. Pesole
  • G. Preparata
Article

Summary

A few years ago we presented a stationary Markov model of gene evolution according to which only homologous genes from not too divergent species obeying the condition of being stationary may behave as reliable molecular clocks. A compartmentalized model of the nuclear genome in which the genes are distributed in compartments, the isochores, defined by their G+C content has been proposed recently. We have found that only homologous gene pairs that are stationary, and belong to the same isochore, can be used consistently for the determination of phylogeny and base substitution rate. In particular, for the rodent-human couple, only about half of the homologous gene pairs are stationary. Stationary genes evolve at the third silent codon position with the same velocity independent of the genes and base composition. By contrast, nonstationary genes display apparent rate values (pseudovelocities) that are significantly higher. Our results cast doubt upon recent claims of a large acceleration in the rate of molecular evolution in rodents.

Key words

Stationary Markov process Silent substitution rates Pseudovelocities Base composition Isochore Nuclear genes Rodents Human Artiodactyls 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardi G, Bernardi GJ (1985) Codon usage and genome composition. J Mol Evol 22:363–365PubMedCrossRefGoogle Scholar
  2. Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11PubMedCrossRefGoogle Scholar
  3. Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958PubMedCrossRefGoogle Scholar
  4. Bishop MJ, Friday AE (1987) In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University PressGoogle Scholar
  5. Dover GA (1987) DNA turnover and molecular clock. J Mol Evol 26:47–58PubMedCrossRefGoogle Scholar
  6. EMBL (1988) Release 14.0. European Molecular Biology Laboratory, HeidelbergGoogle Scholar
  7. GenBank (1987) Release 50.0. Bolt, Beranek and Newman, Cambridge MAGoogle Scholar
  8. Gouy M, Gautier C, Attimonelli M, Lanave C, Di Paola G (1985) ACNUC—a portable retrieval system for nucleic acid sequence database: logical and physical designs and usage. CABIOS 1:167–172PubMedGoogle Scholar
  9. Kimura M (1987) Molecular evolutionary clock and the neutral theory. J Mol Evol 26:24–33PubMedCrossRefGoogle Scholar
  10. Koremberg JR, Rykowski MC (1988) Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell 53:391–400CrossRefGoogle Scholar
  11. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93PubMedCrossRefGoogle Scholar
  12. Lanave C, Preparata G, Saccone C (1985) Mammalian genes as molecular clock? J Mol Evol 21:346–350CrossRefGoogle Scholar
  13. Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342PubMedCrossRefGoogle Scholar
  14. Mouchiroud D, gautier C (1988) High codon usage changes in mammalian genes. Mol Biol Evol 5:192–194PubMedGoogle Scholar
  15. Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169PubMedCrossRefGoogle Scholar
  16. Preparata G, Saccone C (1987) A simple quantitative model of the molecular clock. J Mol Evol 26:7–15PubMedCrossRefGoogle Scholar
  17. Saccone C, Preparata G, Lanave C (1987) Chance, stochasticity and evolution: the Markov clock. In: Quagliariello E, Bernardi G, Ullmann A (eds) Enzyme adaptation to natural philosophy: heritage from Jacques Monod. Elsevier Science Publishers B.V. (Biomedical Division), pp 159–172Google Scholar
  18. Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657PubMedCrossRefGoogle Scholar
  19. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639PubMedCrossRefGoogle Scholar
  20. Wilson AC, Ochman H, Prager EM (1987) Molecular time scale for evolution. Trends Genet 3:241–247CrossRefGoogle Scholar
  21. Wu C, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745PubMedCrossRefGoogle Scholar
  22. Zuckerkandl E (1987) On the molecular evolutionary clock. J Mol Evol 26:34–46PubMedCrossRefGoogle Scholar
  23. Zuckerkandl E, Pauling L (1962) Molecular disease, evolution and genetic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225Google Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • C. Saccone
    • 1
  • G. Pesole
    • 1
  • G. Preparata
    • 2
  1. 1.Centro Studi sui Mitocondri e Metabolismo Energetico, CNR, presso Dipartimento di Biochimica e Biologia MolecolareUniversità di BariItaly
  2. 2.Dipartimento di FisicaUniversità di MilanoItaly

Personalised recommendations