, Volume 44, Issue 4, pp 254–258

Divergent intron arrangement in theMB1/LMP7 proteasome gene pair

  • Sarah Abdulla
  • Stephan Beck
  • Monica Belich
  • Amanda Jackson
  • Toshihiro Nakamura
  • John Trowsdale
Original Paper


We sequenced the humanMB1 gene from a cosmid clone mapping to chromosome 14q11.2–12. The gene spans about 6 kilobases and contains three exons and two introns. There was no evidence of an alternative leader exon, which is a characteristic of the major histocompatibility complex (MHC)-encodedLMP7 gene, the closet relative ofMB1, with which it shares 67% amino acid identity. Conceptual translation of the 5′ end of the gene class for a cleaved leader sequence of 59 amino acids, consistent with western blot data. None of theMB1 gene's three exons were coincident with any of the six exons inLMP7. In contrast, in the delta-encoding gene and its counterpart, the MHC-encodedLMP2 gene (59% amino acid identity), all six exons are arranged at equivalent positions in respect to the coding frame. The unique structure ofMB1 implies a separate origin or different selection pressures acting at this particular locus. DNA repeat analysis provides information on the minimum time of separation of theMB1/LMP7 pair of genes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, K., Yokata, K., Kagawa, S., Shimbara, N., Tamura, T., Akioka, H., Nothwang, H. G., Noda, C., Tanaka, K., and Ichihara, A. cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y.Science 265: 1231–1234, 1994PubMedCrossRefGoogle Scholar
  2. Alderton, R. P., Kitau, J., and Beck, S. Automated DNA hybridisation.Anal Biochem 218: 98–102, 1994PubMedCrossRefGoogle Scholar
  3. Bankier, A. T., Weston, K. M., and Barrell, B. G. Random cloning and sequencing by the M13/dideoxynucleotide chain termination method.Meth Enzymol 155: 51–93, 1987PubMedCrossRefGoogle Scholar
  4. Beck, S., Alderton, R., Kelly, A., Khurshid, F., Radley, E., and Trowsdale, J. DNA sequence analysis of 66 kb of the human MHC class II region encoding a cluster of genes for antigen processing.J Mol Biol 228: 433–441, 1992PubMedCrossRefGoogle Scholar
  5. Beck, S., Abdulla, S., Alderton, R. P., Glynne, R. J., Gut, I. G., Hosking, L. K., Jackson, A., Kelly, A., Newell, W. R., Sanseau, P., Radley, E., Thorpe, K. L., and Trowsdale, J. Evolutionary dynamics of non-coding sequences of the human MHC.J Mol Biol 255: 1–13, 1996PubMedCrossRefGoogle Scholar
  6. Beck, S. and Alderton, R. P. A strategy for the amplification, purification and selection of M13 templates for large scle DNA sequencing.Anal Biochem 212: 498–505, 1993PubMedCrossRefGoogle Scholar
  7. Belich, M. P., Glynne, R. J., Senger, G., Sheer, D., and Trowsdale, J. Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins.Curr Biol 4: 769–776, 1994PubMedCrossRefGoogle Scholar
  8. Brown, N. P., Whittaker, A. J., Newell, W. R., Rawlings, C. J., and Beck, S. Identification and analysis of multigene families by comparison of exon fingerpints.J Mol Biol 249: 342–359, 1995PubMedCrossRefGoogle Scholar
  9. Ciechanover, A. The ubiquitin-proteasome proteolytic pathway.Cell 79: 13–21, 1994PubMedCrossRefGoogle Scholar
  10. Dear, S. and Staden, R. A sequence assembly and editing program, for management of large projects.Nucleic Acids Res 19: 3907–3911. 1991PubMedCrossRefGoogle Scholar
  11. Fehling, H. J., Swat, W., Laplace, C., Kuhn, R., Rajewsky, K., Muller, U., and von Boehmer, H. MHC class I expression in mice lacking the proteasome subunit LMP-7.Science 265: 1234–1237, 1994PubMedCrossRefGoogle Scholar
  12. Fenteany, G., Standaert, R. F., Lane, W. S., Choi, S., Corey, E. J., and Schreiber, S. L. Inhibition of proteasome activities and subunit specific amino terminal threonine modification by lactacystin.Science 268: 726–731, 1995PubMedCrossRefGoogle Scholar
  13. Fruh, K., Gossen, M., Wang, K., Bujard, H., Peterson, P. A., and Yang, Y. Displacement of houstekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex.EMBOJ 13: 3236–3244, 1994Google Scholar
  14. Glynne, R., Powis, S. H., Beck, S., Kelly, A., Kerr, L.-A., and Trowsdale, J. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC.Nature 353: 357–360, 1991PubMedCrossRefGoogle Scholar
  15. Goldberg, A. L. Functions of the proteasome: the lysis at the end of the tunnel.Science 268: 522–523, 1995PubMedCrossRefGoogle Scholar
  16. Hendil, K. B., Kristensen, P., and Uerkvitz, W. Human proteasomes analyzed with monoclonal antibodies.Biochem J 305: 245–52, 1995PubMedGoogle Scholar
  17. Hochstrasser, M. Ubiquitin, proteasomes and the regulation of intracellular protein degradation.Curr Biol 7: 215–223, 1995Google Scholar
  18. Howard, J. C. Restrictions on the use of antigenic peptides by the immune system.Proc Natl Acad Sci USA 90: 3777–3779, 1993PubMedCrossRefGoogle Scholar
  19. Jurka, J. A new subfamily of recently retroposed Alu repeats.Nucleic Acids Research 21: 2252, 1993PubMedCrossRefGoogle Scholar
  20. Jurka, J. and Milosvaljevic, A. Reconstruction and analysis of human alu genes.J Mol Evol 32: 105–121, 1991PubMedCrossRefGoogle Scholar
  21. Jurka, J., Walichiewicz, J., and Milosavljevic, A. Prototypic sequences for human repetitive DNA.J Mol Evol 35: 286–291, 1992PubMedCrossRefGoogle Scholar
  22. Kelly, A., Powis, S. H., Glynne, R., Radley, E., Beck, S., and Trowsdale, J. Second proteasome-related gene in the human MHC class II region.Nature 353: 667–668, 1991PubMedCrossRefGoogle Scholar
  23. Larsen, F., Solheim, J., Kristensen, T., Kolsto, A.-B., and Prydz, H. A tight cluster of five unrelated human genes on chromosome 16q22.1.Hum Mol Genet 2: 1589–1595, 1993PubMedCrossRefGoogle Scholar
  24. Long, M., de Souza, S., and Gilbert, W. Evolution of the intro-exon structure of eukaryotic genes.Curr Opin Genet Dev 5: 1995Google Scholar
  25. Lowe, J., Stock D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. Crystal structure of the 20S proteasome from the Archaeon T. acidophilum at 3.4 A resolution.Science 268: 533–539, 1995PubMedCrossRefGoogle Scholar
  26. Martinez, C. K. and Monaco, J. J. Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene.Nature 353: 664–667, 1991PubMedCrossRefGoogle Scholar
  27. Meinhardt, T., Graf, U., and Hämmerling, G. J. Different genomic structure of mouse and humanLmp7 genes: characterization of MHC-encoded proteasome genes.Immunogenetics 38: 373–379, 1993PubMedCrossRefGoogle Scholar
  28. Momburg, F., Ortiz-Navarette, V., Neefjes, J., Goulmy, E., van de Wal, Y., Spits, H., Powis, S. J., Butcher, G. W., Howard, J. C., Walden, P. and Hammerling, G. J. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 360: 174–177, 1992PubMedCrossRefGoogle Scholar
  29. Namikawa, C., Salter-Cid, L., Flajnik, M. F., Kato, Y., Nonaka, M., and Sasaki, M. Isolation of Xenopus LMP-7 homologues.J Immunol 155: 1964–1971, 1995PubMedGoogle Scholar
  30. Oritz-Navarette, V., Seelig, A., Gernold, M., Frentzel, S., Kloetzel, P. M., and Hammerling, G. J. Subunit of the “20S” proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex.Nature 353: 662–664, 1991CrossRefGoogle Scholar
  31. Sanger, F., Nicklen, S., and Coulson, A. R., DNA sequencing with chain-terminating inhibitors.Proc Natl Acad Sci USA 74: 5463–5467, 1977PubMedCrossRefGoogle Scholar
  32. Seemuller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W. Proteasome from Thermoplasma acidophilum: a threonine protease.Science 268: 579–582, 1995PubMedCrossRefGoogle Scholar
  33. Sibille, C., Gould, K. G., Willard-Gallo, K., Thomson, S., Rivett, A. J., Powis, S., Butcher, G. W., and De Baetselier, P. LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes.Curr Biol 5: 923–930, 1995PubMedCrossRefGoogle Scholar
  34. Staden, R. (ed.),Computer Handling of DNA Sequencing Projects. IRL Press, Oxford, 1987Google Scholar
  35. Van Kaer, L., Ashton-Rickardt, P. G., Eichelberger, M., Gaczynska, M., Nagashima, K., Rock, K. L., Goldberg, A. L., Doherty, P. C., and Tonegawa, S. Altered peptidase and viral-specific T cell response in LMP2 mutant mice.Immunity 1: 533–541, 1994PubMedCrossRefGoogle Scholar
  36. Woodward, E. C. and Monaco, J. J. Characterization and mapping of the gene encoding mouse proteasome subunit DELTA (Lmp19).Immunogenetics 42: 28–34, 1995PubMedCrossRefGoogle Scholar
  37. Zietkiewitcz, E., Richter, C., Malalowski, W., Jurka, J., and Labuda, D. A young Alu subfamily amplified independently in human and African great apes lineages.Nucleic Acids Res 22: 5608–5612, 1994CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Sarah Abdulla
    • 1
  • Stephan Beck
    • 1
  • Monica Belich
    • 1
  • Amanda Jackson
    • 1
  • Toshihiro Nakamura
    • 1
  • John Trowsdale
    • 1
  1. 1.Imperial Cancer Research FundLondonUK

Personalised recommendations