Current Microbiology

, Volume 3, Issue 3, pp 177–180 | Cite as

Induction of aryl hydrocarbon hydroxylase inNeurospora crassa by benzo (α) pyrene

  • W. S. Lin
  • M. Kapoor
Article

Abstract

WhenNeurospora crassa is grown on a minimal medium with sucrose as the carbon source, aryl hydrocarbon [benzo(α)pyrene] hydroxylase is induced in the presence of low concentrations of benzo(α)pyrene. Benzo(α)pyrene, a potent precarcinogen, is taken up readily by the growing mycelium and is metabolized by the intracellular enzymes to yield hydroxylated derivatives. Fractionation of the products by high pressure liquid chromatography following extraction in organic solvents revealed the presence of one major product. The purified major product was identified as 3-hydroxybenzo(α)pyrene by mass spectral analysis and by comparison of fluorescence emission and ultraviolet absorption spectra with authentic samples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Daly, J. W., Jerina, D. M., Witkop, B 1972. Arene oxides and the NIH shift. The metabolism, toxicity, and carcinogenicity of aromatic compounds. Experientia28:1129–1149.PubMedCrossRefGoogle Scholar
  2. 2.
    Duppel, W, Lebeault, J.-M., Coon, M. J. 1973. Properties of a yeast cytochrome P-450-containing enzyme system which catalyzes the hydroxylation of fatty acids, alkanes and drugs. European Journal of Biochemistry36:583–592.PubMedCrossRefGoogle Scholar
  3. 3.
    Ferris, J. P., Fasco, M. J., Stylianopoulou, F. L., Jerina, D. M., Daly, J. W., Jeffrey, A. M. 1973. Monooxygenase activity inCunninghamella bainieri: Evidence for a fungal system similar to liver microsomes. Archives of Biochemistry and Biophysics156:97–103.PubMedCrossRefGoogle Scholar
  4. 4.
    Ferris, J. P., MacDonald, L. H., Patrie, M. A., Martin, M. A. 1976. Aryl hydrocarbon hydroxylase activity in the fungusCunninghamella bainieri: Evidence for the presence of cytochrome P-450. Archives of Biochemistry and Biophysics175:443–452.PubMedCrossRefGoogle Scholar
  5. 5.
    Gallo, M., Roche, B., Azoulay, E. 1976. Microsomal cytochromes ofCandida tropicalis grown on alkanes. Biochimica et Biophysica Acta419:425–434.PubMedCrossRefGoogle Scholar
  6. 6.
    Guengerich, F. P. 1977. Separation and purification of multiple forms of microsomal cytochrome P-450. Journal of Biological Chemistry252:3970–3979.PubMedGoogle Scholar
  7. 7.
    Johnson, E. F., Muller-Eberhard, U. 1977. Multiple forms of cytochrome P-450: Resolution and purification of rabbit liver aryl hydrocarbon hydroxylase. Biochemical and Biophysical Research Communications76:644–651.PubMedCrossRefGoogle Scholar
  8. 8.
    Koreeda, M., Moore, P. D., Wislocki, P. G., Levin, W., Conney A. H. 1978. Binding of benzo(α)pyrene 7,8-diol-9,10-epoxides to DNA, RNA, and protein of mouse skin occurs with high stereoselectivity. Science199:778–781.PubMedCrossRefGoogle Scholar
  9. 9.
    Kumaki, K., Jensen, N. M., Shire, J. G. M., Nebert, D. W. 1977. Genetic differences in induction of cytosolic reduced-NAD(P): Menadione oxidoreductase and microsomal aryl hydrocarbon hydroxylase in the mouse. Journal of Biological Chemistry252:157–165.PubMedGoogle Scholar
  10. 10.
    Lowry, O. H., Rosebrough, N. J., Farr, A. O., Randall, R. J. 1951. Protein measurement with Folin phenol reagent. Journal of Biological Chemistry193:265–275.PubMedGoogle Scholar
  11. 11.
    Lu, A. Y. h., Coon, M. J. 1968. Role of hemoprotein P-450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes. Journal of Biological Chemistry243:1331–1332.PubMedGoogle Scholar
  12. 12.
    Lu, A. Y. H., Lewin, W., West, S. B., Jacobson, M., Ryan, D., Kutzman, R., Conney, A. H. 1973. Reconstituted liver microsomal crosomal enzyme system that hydroxylates drugs, other foreign compounds, and endogenous substrates. VI. Different substrate specificities of the cytochrome P-450 fractions from control and phenobarbital-treated rats. Journal of Biological Chemistry248:456–460.PubMedGoogle Scholar
  13. 13.
    Miller, J. A. 1970. Carcinogenesis by chemicals: An overview. Cancer Research30:559–576.PubMedGoogle Scholar
  14. 14.
    Miller, J. A., Miller, E. C. 1977. Ultimate chemical carcinogens as reactive mutagenic electrophiles, pp. 605–627. In: Hiatt, H. H., Watson, J. D., Winsten, J. A. (eds.), Origins of human cancer. Cold Spring Harbor: Cold Spring Harbor Laboratory.Google Scholar
  15. 15.
    Nebert, D. W. 1978. Genetic differences in microsomal electron transport: The Ah locus, pp. 226–240. In: Fleischer, S., Packer, L. (eds.), Methods in enzymology, vol. 52. New York: Academic Press.Google Scholar
  16. 16.
    Nebert, D. W., Gielen, J. E., Goujon, F. M. 1972. Genetic expression of aryl hydrocarbon hydroxylase induction. III. Changes in the binding of n-octylamine to cytochrome P-450. Molecular Pharmacology8:651–666.PubMedGoogle Scholar
  17. 17.
    Sato, R., Omura T. 1978. Cytochrome P-450. Tokyo, New York: Kadansha and Academic Press.Google Scholar
  18. 18.
    Sims, P., Grover, P. L., Swaisland, A., Pal, K., Hewer, A. 1974. Metabolic activation of benzo(α)pyrene proceeds by a diol epoxide. Nature252:326–327.PubMedCrossRefGoogle Scholar
  19. 19.
    Vogel, H. J. 1956. A convenient growth medium forNeurospora crassa (N medium). Microbial Genetics Bulletin13:42–43.Google Scholar
  20. 20.
    Yagi, H., Holder, G. M., Dansette, P. M., Hernandez, O., Yeh, H. J. C., LaMahieu, R. A., Jerina, D. M. 1976. Synthesis and spectral properties of the isomeric hydroxybenzo(α)pyrenes. Journal of Organic Chemistry41:977–985.CrossRefGoogle Scholar
  21. 21.
    Yang, S. K., McCourt, D. W., Leutz, J. C., Gelboin, H. V. 1977. Benzo(α)pyrene diol epoxides: Mechanism of enzymatic formation and optically active intermediates. Science196:1199–1201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1979

Authors and Affiliations

  • W. S. Lin
    • 1
  • M. Kapoor
    • 1
  1. 1.Department of BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations