Bulletin Volcanologique

, 41:286 | Cite as

The exceptional magnitude and intensity of the Toba eruption, sumatra: An example of the use of deep-sea tephra layers as a geological tool

  • D. Ninkovich
  • R. S. J. Sparks
  • M. T. Ledbetter
Article

Abstract

The eruption of Toba (75,000 years BP), Sumatra, is the largest magnitude eruption documented from the Quaternary. The eruption produced the largest-known caldera the dimensions of which are 100 × 30 km and which is surrounded by rhyolitic ignimbrite covering an area of over 20,000 km2. The associated deep-sea tephra layer is found in piston cores in the north-eastern Indian Ocean covering a minimum area of 5 × 106 km2. We have investigated the thickness, grain size and texture of the Toba deep-sea tephra layer in order to demonstrate the use of deep-sea tephra layers as a volcanological tool. The exceptional magnitude and intensity of the Toba eruption is demonstrated by comparison of these data with the deep-sea tephra layers associated with the eruptions of the Campanian ignimbrite, Italy and of Santorini, Greece in Minoan time. The volume of ignimbrite and distal tephra fall deposit produced in the Toba eruption are comparable, a total of at least 1000 km3 of dense rhyolitic magma. In contrast the volume of dense magma produced by the Campanian and Santorini eruptions are approximately 70 and 13 km3 respectively. Thickness versus distance data on the three deep-sea tephra layers show that eruptions of smaller magnitude than Santorini are unlikely to be preserved as distinct tephra layers in most deep-sea cores. In proximal cores all three tephra layers show two distinct units: a lower coarse-grained unit and an upper fine-grained unit. We interpret the lower unit as a plinian deposit and the upper unit as a co-ignimbrite ash-fall deposit, indicating two major eruptive phases. The Toba tephra layer is coarser both in maximum and median grain size than the Campanian and Santorini layers at a given distance from source. These data are interpreted to indicate a very high cruption column, estimated to be at least 45 km. We have applied a method for estimating the duration of the Toba eruption from the style of graded-bedding in deep-sea tephra layers. Studies of two cores yield estimates of 9 and 14 days. The eruption column height and duration estimates both indicate an average volume discharge rate of approximately 106 m3/sec. The Toba eruption therefore was not only of exceptional magnitude, but also of exceptional intensity.

References

  1. Aramaki, S. andUt, T., 1966,The Aira and Ata Pyroclastic Flows and Related Caldera Depressions in Southern Kyushu, Japan. Bull. Volcanol.,29, p. 29–47.Google Scholar
  2. Bailey, R. A., Dalrymple, G. B. andLamphere, M. A.,Volcanism, Structure, and Geochronology of Long Valley Caldera, Mono County, California. J. Geophys. Res.,81, p. 725–744.Google Scholar
  3. Barberi, F., Innocenti, F., Lirer, L., Munno, R., Pescatore, T. andSantacroce, R., 1978,The Campanian Ignimbrite: a Major Prehistoric Eruption in the Naples Area (Italy). Bull. Volcanol.,41–1, p. 10–31.Google Scholar
  4. Bemmelen, R. W. van, 1939,The Volcanotectonic Origin of Lake Toba (North Sunatra). De Ing. in Ned. Ind.,6, p. 126–140.Google Scholar
  5. —————, 1949,The Geology of Indonesia. 1, Martinus Nijhoff, The Hague, 732 pp.Google Scholar
  6. Bond, A. andSparks, R. S. J., 1976,The Minoan Eruption of Santorini, Greece. J. Geol. Soc. Lond.,132, p. 1–16.Google Scholar
  7. Borch, C. C. von der,et al., 1974,Site Reports. Initial Reports of the Deep Sea Drilling Project. Government Printing Office, Washington D.C.,22, p. 3–349.Google Scholar
  8. Collings, H. D., 1938,Pleistocene Site in the Malay Peninsula. Nature,142, p. 575–576.Google Scholar
  9. Curray, J. R. andMoore, D. G., 1971,Growth of the Bengal Deep-sea Fan and Denudation of the Himalayas. Geol. Soc. Amer. Bull.,82, p. 563–572.CrossRefGoogle Scholar
  10. Fisher, R. V., 1964,Maximum Size, Median Diameter and Sorting of Tephra. J. Geophys. Res.,69, p. 341–355.Google Scholar
  11. Hahn, G. A., Rose, W. I., Jr. andMeyer, T., 1978,Geochemical Correlation of Genetically Related Rhyolite Ash-flow and Airfall Ashes, Central and Western Guatemala and Equatorial Pacific. Geol. Soc. Amer. Special Paper on Ash-Flow Tuff (in press).Google Scholar
  12. Huang, T. C., Watkins, N. D. andWilson, L., in press,Deep-sea Tephra: Azores Volcanism in the Last 300,000 Years. Geol. Soc. Amer. Bull.Google Scholar
  13. Inman, D. L., 1952,Measures for Describing the Size Distribution of Sediments. J. Sedim. Petrol.,22, p. 125–145.Google Scholar
  14. Katsui, Y., 1961,Evolution and Magmatic History of Some Krakaotan Calderas in Hokkaido, Japan. J. Fac. Sci. Hokkaido Univ.,IV, 11, p. 631–650.Google Scholar
  15. Keller, J., Ryan, W. B. F., Ninkovich, D. andAltherr, R., 1978,Explosive Volcanic Activity in the Mediterranean over the Past 200,000 Years as Recorded in Deep-sea Sediments. Geol. Soc. Amer.,89, p. 591–604.CrossRefGoogle Scholar
  16. Knox, J. B. andShort, N. M., 1964,A Diagnostic Model Using Ash-fall Data To Determine Eruption Characteristics and Atmospheric Conditions during a Major Volcanic Event. Bull. Volcanol.,27, p. 5–24.Google Scholar
  17. Ledbetter, M. andSparks, R. S. J., 1979,The Duration of Large-magnitude Silicic Eruptions Deduced from Graded Bedding in Deep-sea Tephra Layers, Geology,7, p. 240–244.CrossRefGoogle Scholar
  18. Lipman, P.W., Prostka, H. J. andChristiansen, R. L., 1972,Cenozoic Volcanism and Plate-tectonic Evolution of the Western United States, Parts I and II. Phil. Trans. R. Soc. Lond.,A-271, p. 217–248.Google Scholar
  19. Machida, M. andArai, F., 1976,A Widespread Volcanic Ash Discovery of Aim-Ta Ash and Its Significance. Kagaku,46, p. 339–347.Google Scholar
  20. Ninkovich, D., 1968,Pleistocene Volcanic Eruptions in New Zealand Recorded in Deep-sea Sediments. Earth and Planet. Sci. Letts.,4, p. 89–102.CrossRefGoogle Scholar
  21. —————, 1979,Distribution, Age and Chemical Composition of Tephra Layers in Deep-sea Sediments off Western Indonesia. J. Volcanol. and Geothermal Res.,5, p. 67–86.CrossRefGoogle Scholar
  22. ————— andDonn, W. L., 1976,Explosive Cenozoic Volcanism and Climatic Implications. Science,194, p. 899–906.CrossRefGoogle Scholar
  23. ----- andHeezen, B. C., 1965,Santorini Tephra. Proc. 17th Symp. of the Colston Research Society, University of Bristol,XVII, p. 413–452.Google Scholar
  24. ————— and —————, 1967,Physical and Chemical Properties of Volcanic Glass Shards from Pozzuolana Ash, Thera Island, and from Upper and Lower Ash Layers in Eastern Mediterranean Deep-sea Sediments. Nature,213, p. 582–584.CrossRefGoogle Scholar
  25. ----- andRuddiman, W., 1977,Bioturbation of Volcanic Ash Layers in Deep-sea Sediments. X INQUA Congress Proc. (abstract), p. 326.Google Scholar
  26. ————— andShackleton, N. J., 1975,Distribution, Stratigraphic Position and Age of Ash Layer « L » in the Panama Basin Region. Earth and Planet. Sci. Letts.,27, p. 20–34.CrossRefGoogle Scholar
  27. —————, —————,Abdel-Monem, A. A., Obradovich, J. D. andIzett, G., 1978,K-Ar Age of the Late Pleistocene Eruption of Toba (North Sumatra).Nature, 276, p. 574–577.CrossRefGoogle Scholar
  28. Settle, M., 1978,Volcanic Eruption Clouds and the Thermal Power Output of Explosive Eruptions. J. Volcanol. and Geothermal Res.,3, p. 1727–1739.Google Scholar
  29. Shaw, D., Watkins, N. D. andHuang, T. C., 1974,Atmospherically Transported Volcanic Glass in Deep-sea Sediments: Theoretical Considerations. J. Geophys. Res.,79, p. 3087–3094.Google Scholar
  30. Smith, R. L., 1960,Ash-flows. Geol. Soc. Amer. Bull.,71, p. 795–842.Google Scholar
  31. Sparks, R. S. J., Self, S. andWalker, G. P. L., 1973,The Products of Ignimbrite Eruptions. Geology,1, p. 115–118.CrossRefGoogle Scholar
  32. ————— andWalker, G. P. L., 1977,The Significance of Vitric-enriched Air-fall Ashes Associated with Cristal-enriched Ignimbrites. Jour. Volcanol. and Geothermal Res.,2, p. 329–341.CrossRefGoogle Scholar
  33. ————— andHulme, G., 1978,Theoretical Modeling of the Generation, Movement, and Emplacement of Pyroclastic Flows by Column Collapse, J. Geophys. Res.,83, p. 1727–1739.Google Scholar
  34. Susuki, T., Katsui, Y. andNakamura, T., 1973,Size Distribution of the Tarumai Ta-Tb Pumice Fall Deposit. Bull. Volc. Soc. Japan,18, p. 47–63.Google Scholar
  35. Thorarinsson, S., 1954,The Tephra Fall from Hekla on March 29 th, 1947. In:The Eruption of Hekla 1947–48. II, p. 1–78, Leiftur, H.F., Reykjavik.Google Scholar
  36. Tjia, H. D. andKusnaeny, K., 1976,An Early Quaternary Age of an Ignimbrite Layer, Lake Toba, Sumatra. Sains Malaysiana,5, p. 65–70.Google Scholar
  37. Tsuya, H., 1955,Geological and Petrological Studies of Volcano Fujii, 5: On the 1707 Eruption of Volcano Fujii. Bull. Earthquake Res. Inst.,33, p. 341–383.Google Scholar
  38. Thunnel, R., Federman, A., Sparks, R. S. J. andWilliams, D. F., 1979,The Age, Origin and Volcanological Significance of the Y-5 Ash Layer in the Mediterranean. Quaternary Research,12, p. 241–253.CrossRefGoogle Scholar
  39. Walker, G. P. L., 1971,Grain-size Characteristics of Pyroclastic Deposits, Jour. Geology,79, p. 696–714.CrossRefGoogle Scholar
  40. —————, 1973,Explosive Volcanic Eruptions: A New Classification Scheme. Geol. Rundschau,62, p. 431–446.CrossRefGoogle Scholar
  41. Watkins, N. D., Sparks, R. S. J., Sigurdsson, H., Huang, T. C., Federman, A., Carey, S. andNinkovich, D., 1978,Volume and Extent of the Minoan Tephra from Santorini Volcano: New Evidence from Deep-sea Sediment Cores. Nature,271, p. 122–126.CrossRefGoogle Scholar
  42. Westerveld, J., 1952,Quaternary Volcanism on Sumatra. Geol. Soc. Amer. Bull.,63, p. 561.Google Scholar
  43. Williams, H. andGoles, G., 1968,Volume of the Mazama Ash-fall and the Origin of Crater Lake Caldera. Oregon Dept. of Geology and Industry Bulletin,62, p. 37–41.Google Scholar
  44. Wilson, L., Sparks, R. S. J., Huang, T. C. andWatkins, N. D., 1978,The Control of Volcanic Column Heights by Eruption Energetics and Dynamics. J. Geophys. Res.,83, p. 1829–1836.CrossRefGoogle Scholar

Copyright information

© Intern. Association of Volcanology and Chemistry of the Earth’s Interior 1978

Authors and Affiliations

  • D. Ninkovich
    • 1
  • R. S. J. Sparks
    • 2
  • M. T. Ledbetter
    • 2
  1. 1.Lamont-Doherty Geological ObservatoryColumbia UniversityPalisadeU.S.A.
  2. 2.Graduate School of OceanographyUniversity of Rhode IslandKingstonU.S.A.

Personalised recommendations