Advertisement

Bulletin Volcanologique

, 41:196 | Cite as

Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water

  • S. Self
  • R. S. J. Sparks
Article

Abstract

We have recognized a type of pyroclastic deposit formed by the interaction of water and silicic magma during explosive eruptions. These deposits have a widespread dispersal, similar to plinian tephra, but the overall grain size is much tiner. Several deposits studied can be associated with caldera lakes or sea water and water/magma interaction is proposed to account for the fine grain size.

Several examples have been studied, including the Oruanui Formation, N.Z., and the Askja 1875 deposit. Both show little downwind decrease in median diameter, a downwind decrease in sorting (σφ) (more evident in the Askja deposit) and coarse tail grading. The Askja example has base surge deposits near source and some Oruanui members show multiple thin beds near source; both are common features of phreatomagmatic deposits. Isopachs of the Askja deposit indicate a source under Lake Oskjuvatn in Askja Caldera and those of the Oruanui indicate a source under the NW part of Lake Taupo.

In terms of dispersal area, volume and calculated eruption column heights, these deposits are similar to plinian. However, their extreme fragmentation due to magma/water interaction, superimposed on fragmentation imparted by carlier vesiculation, gives a much finer and more complex grain size distribution than plinian counterparts. The field of phreatomagmatic equivalents to plinian pumice deposits was unoccupied onWalker’s (1973) classification of explosive volcanic eruptions. Such deposits are the phreatomagmatic analogue of plinian deposits and the name « phreatoplinian » is proposed.

Keywords

Tephra Pyroclastic Deposit Fall Deposit Pumice Clast Tuff Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aramaki, S., 1975,Classification and Mechanisms of Volcanic Eruptions. Bull. of Volc. Soc. Japan,20, p. 205–221.Google Scholar
  2. Bennett, F. D., 1972,Shallow Submarine Volcanism. J. Geophys. Res.,77, p. 5755–5759.Google Scholar
  3. Blackburns, E. A., Wlson, L. andSparks, R. S. J., 1976,Mechanisms and Dynamics of Strombolian Activity. J. Geol. Soc. Lond.,132, p. 1–16.Google Scholar
  4. Booth, B. andWalker G. P. L., 1973,Ash Deposits from the New Explosion Crater, Etna 1971. Phil. Trans. R. Soc. Lond.,274, p. 147–151.Google Scholar
  5. —————, andCroasdale, R., 1978,A Quantitative Study of Five Thousand Years of Volcanism on São Miguel. Azores. Phil. Trans. R. Soc. Lond.,288, p. 271–319.Google Scholar
  6. Colgate, S. A. andSigurgeisson, T., 1973,Dynamic Mixing of Water and Lava. Nature,244, p. 552–555.CrossRefGoogle Scholar
  7. Crowe, B. M. andFisher, R. V., 1973,Sedimentary Structures in Base Surge Deposits with Special Reference to Cross-bedding, Ubehebe Craters, Death Valley, California. Geol. Soc. Am. Bull.,84, p. 663–682.CrossRefGoogle Scholar
  8. Escher, B. G., 1933,On a Classification of Central Eruptions According to Gas Pressure of the Magma and Viscosity of the Lavas. Leids. Geol. Mededel.,6, p. 45–49.Google Scholar
  9. Fisher, R. V., 1964,Maximum Size, Median Diameter, and Sorting of Tephra. J. Geophys. Res.,69, p. 341–355.Google Scholar
  10. Hahn, G., Rose W. I. andMeyers T.,Genetically Related Rhyolitic Ash Flow and Air Fall Tuffs, Gentral and Western Guatemala and the Equatorial Pacific. (in press).Google Scholar
  11. Healy, J., 1964,Stratigraphy and Chronology of Late Quaternary Volcanic Ash in Taupo, Rotorua and Gisborne Districts. N.Z. Geol. Surv. Bull.,73, part I, p. 1–42.Google Scholar
  12. Heiken, G. H., 1971,Tuff Rings: Examples from the Fort Rock — Christmas Lake Valley Basin, South Central Oregon. J. Geophys. Res.,76, p. 5615–5626.Google Scholar
  13. —————, 1974,An Atlas of Volcanic Ash. Smithsonian Contrib. to Earth Sci. No. 12, Smithsonian Institution Press, Washington, DC, 100 pp.Google Scholar
  14. Huang, T. C., Watkins N. D. andShaw D. M., 1974,Atmospherically Transported Volcanic Glass in Deep-Sea Sediments: Development of Separation and Counting Technique. Deep-Sea Res.,79, p. 3057–3071.Google Scholar
  15. Inman, D. L., 1952,Measures for Describing the Size Distribution of Sediments. J. Sed. Petrol.,22, p. 125–145.Google Scholar
  16. Knox, J. B. andShort N. M., 1964,A Diagnostic Model Using Ash Fall Data to Determine Eruption Characteristics and Determine Eruption Characteristics and Atmospheric Conditions During a Major Volcanic Event. Bull. Volcanol.,27, p. 5–24.Google Scholar
  17. Kohn, B. P., 1973,Some Studies of New Zealand Quaternary Pyroclastic Rocks. Unpub. Ph.D. Thesis, Victoria University, Weilington, New Zealand.Google Scholar
  18. Lewis, K. andKohn B. P., 1973,Ashes, Turbidites, and Rates of Sedimentation on the Continental Slope off Hawkes Bay. N.Z. J. of Geol. and Geophys.,6, p. 439–454.Google Scholar
  19. Lirer, L., Pescatore T., Booth, B. andWalker, G. P. L., 1973,Two Plinian Pumice-Fall Deposits from Somma-Vesuvius, Italy. Geol. Soc. Am. Bull.,84, p. 759–772.CrossRefGoogle Scholar
  20. Lorenz, V., 1974,Vesiculated Tuffs and Associated Features. Sedimentology,21, p. 273–291.CrossRefGoogle Scholar
  21. Machado, F., Parsons, W. H., Richards, A. F. andMulford, J. W., 1962,Capelinhos Eruption of Fayal Volcano, Azores, 1957–1958. J. Geophys. Res.,67, p. 3519–3529.Google Scholar
  22. McBirney, A. R., 1963,Factors Governing the Nature of Submarine Volcanism. Bull. Volcanol.,26, p. 455–469.CrossRefGoogle Scholar
  23. Milne, D. J., 1975,Quaternary Geology of the Rangitikei River Valley, New Zealand. Unpub. PhD. Thesis, Victoria University, Wellington, New Zealand.Google Scholar
  24. Moore, J. G., 1967,Base Surge in Recent Eruptions. Bull. Volcanol.,30, p. 337–363.CrossRefGoogle Scholar
  25. —————, 1975,Mechanism of Formation of Pillow Lava. Am. Sci.,63, p. 269–277.Google Scholar
  26. Peckover, R. S., Buchanan, D. J. andAsilley, D. E. T. F., 1973,Fuel-Coolant Interactions in Submarine Volcanism. Nature,245, p. 307.CrossRefGoogle Scholar
  27. Pullar, W. A., 1973,Maps of Isopachs and Volumes of Tephra, Central North Island, New Zealand, 1:1,000,000. New Zealand Soil Bureau Maps 133/8–14, to accompany New Zealand Soil Survey Report 1.Google Scholar
  28. Schmincke, H.-U., Fisher, R. V. andWaters, A. C., 1973,Antidune and Chute and Pool Structures in the Base Surge Deposits of the Lacher See area, Germany. Sedimentology,20, p. 553–574.CrossRefGoogle Scholar
  29. Schmincke, H.-U., Fisher, R. V. andWaters, G. P. L., 1974,The 1973 Heimaey Strombolian Scoria Deposit, Iceland. Geol. Mag.,111, p. 539–548.CrossRefGoogle Scholar
  30. Shaw, D. M., Watkins, N. D. andHuang T. C., 1974,Atmospherically Transported Volcanic Glass in Deep-Sea Sediments: Theoretical Considerations. J. Geophys. Res.,79, p. 3087–3094.Google Scholar
  31. Sheridan, M. F. andUpdike, R. G., 1975,Sugarloaf Mountain Tephra — A Pleistocene Rhyolitic Deposit of Base Surge Origin in Northern Arizona. Gcol. Soc. Am. Bull.,86, p. 571–581.CrossRefGoogle Scholar
  32. Sigurdsson, H. andSparks, R. S. J.,Lateral Flow of Magma in Rifted Icelandic Crust. Nature (in press).Google Scholar
  33. Sparks, R. S. J. andWalker, G. P. L., 1978,The Significance of Vitric-Enriched Air-Fall Ashes Associated with Crystal-Enriched Ignimbrites. J. Volcanol. and Geothermal Res.,2, p. 329–341.CrossRefGoogle Scholar
  34. Susuki, T., Katsui Y. andNakamura T., 1973,Size Distribution of the Tarumai Ta-b Pumice Fall Deposit. Bull. of Volc. Soc. Japan,18, p. 47–63.Google Scholar
  35. Symons, G. J., ed., 1888,The Eruption of Krakatoa and Subsequent Phenomena. Krakatoa Committee, Roval Society, London, 494 pp.Google Scholar
  36. Tazieff, H., 1968,Sur le mécanisme des éruptions basaltiques sous-marines à faibles profundeurs et la genèse d’hyaloclastites associées. Geol. Rundschau.57, p. 955–966.CrossRefGoogle Scholar
  37. Thorarinsson, S., 1963,Askja on Fire. Reykjavik, Iceland.Google Scholar
  38. —————, 1968,On the Rate of Lava and Tephra Production and the Upward Migration of Magma in Four Icelandic Eruptions. Geol. Rundschau,57, p. 705–718.CrossRefGoogle Scholar
  39. ————— andEllison, G., 1964,The Submarine Eruption off the Vestmann Islands, 1963–64, Bull. Volcanol.,27, p. 435–445.Google Scholar
  40. Topping, W. W., 1974,Some Aspects of the Quaternary History of Tongariro Volcanic Centre. Unpub. PhD. Thesis, Victoria University, Wellington, New Zealand.Google Scholar
  41. Verbeek, R. D. M., 1884,The Krakatoa Eruption. Nature,30, p. 10–15.Google Scholar
  42. Vucetich, C. G. andHoworth, R., 1976,Proposed Definition of the Kawakawa Tephra, the 20,000-Years-B.P. Marker Horizon in the New Zealand Region. N. Z. J. of Geol. and Geophys.,19, p. 43–50.Google Scholar
  43. ————— andPullar, W. A., 1969,Stratigraphy and Chronology of Late Pleistocene Volcanic Ash Beds in Central North Island, New Zealand, N.Z. J. Geol. and Geophys.,12, p. 784–837.Google Scholar
  44. Walker, G. P. L., 1971,Grain Size Characteristics of Pyroclastic Deposits. J. Geol.,79, p. 696–714.CrossRefGoogle Scholar
  45. —————, 1973,Explosive Volcanic Eruptions — A New Classification Scheme. Geol. Rundschau,62, p. 431–446.CrossRefGoogle Scholar
  46. ————— andCroasdale, R., 1971,Two Plinian-type Eruptions in the Azores. J. Geol. Soc. Lond.,127, p. 17–55.Google Scholar
  47. ————— and —————, 1972,Characteristics of Some Basaltic Pyroclastics. Bull. Volcanol.,35, p. 303–317.Google Scholar
  48. ————— andBowell E. L. G., 1971,Explosive Volcanic Eruptions — I: The Rate of Fall of Pyroclastics. Geophys. J. R. Astr. Soc.,22, p. 377–383.Google Scholar
  49. Wilson, L., Sparks R. S. J., Huang T. C. andWatkins, N. D., 1978,The Control of Volcanic Column Heights by Eruption Energetics and Dynamics. J. Geophys. Res.,83, p. 1829–1836.CrossRefGoogle Scholar

Copyright information

© Intern. Association of Volcanology and Chemistry of the Earth’s Interior 1978

Authors and Affiliations

  • S. Self
    • 1
  • R. S. J. Sparks
    • 2
  1. 1.Department of Earth SciencesDartmouth CollegeHanoverUSA
  2. 2.Graduate School of OceanographyUniversity of Rhode IslandKingstonUSA

Personalised recommendations