Advertisement

Test

, Volume 9, Issue 1, pp 97–122 | Cite as

Estimation of the conditional distribution in a conditional Koziol-green model

  • Noel Veraverbeke
  • Carmen Cadarso-Suárez
Article

Abstract

We introduce a new estimator for the conditional distribution functions under the proportional hazards model of random censorship. Such estimator generalizes the one proposed by Abdushkurov, Chen and Lin when covariates are present. Asymptotic theory is given for this estimator. First, we established the strong consistency, and also obtain the rate of this convergence. Then, an asymptotic representation for the conditional distribution function estimator leads us to derive its asymptotic normality. The practical performance of the estimation procedure is illustrated on a real data set. Finally, as a further application of the new estimator, some functionals of interest in survival exploratory analysis are brieflys discussed.

Key Words

Asymptotic normality consistency proportional hazard regression right censoring 

AMS subject classification

primary 62G07 secondary 62G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdushukurov, A.A. (1984). On some estimates of the distribution function under random censorship. In Conference of Young Scientists. Mathematical Institute of the Academic Sciences, Uzbek SSR, Tashkent. VINITI No. 8756-V (in Russian).Google Scholar
  2. Aerts, M., P. Janssen and N. Veraverbeke (1994). Asymptotic theory for regression quantile estimators in the heteroscedastic regression model. InAsymptotic Statistics (P. Mandl and M. Husková ed) Physica-Verlag, Heidelberg, 151–161.Google Scholar
  3. Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical Report, University of California, Berkeley.Google Scholar
  4. Cheng, P.E. and G.D. Lin (1984). Maximum likelihood estimation of survival function under the Koziol-Green proportional hazard model. Technical Report B-84-5, Institute of Statistics, Academia Sinica, Taipei, Taiwan.Google Scholar
  5. Cheng, P.E. and G.D. Lin (1987). Maximum likelihood estimation of a survival function under the Koziol-Green proportional hazards models.Statistics and Probability Letters,5, 75–80.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Gsörgö, S. (1988). Estimation in the proportional hazards model of random censorship.Statistics,19, 437–463.MathSciNetGoogle Scholar
  7. Csörgő, S. and J. Miolniczuk (1988). Density estimation in the simple proportional hazards model.Statistics and Probability Letters,6, 419–426.CrossRefMathSciNetGoogle Scholar
  8. Dabrowska, D. M. (1987). Non-parametric regression with censored survival data.Scandinavian Journal of Statistics,14, 181–197.MathSciNetGoogle Scholar
  9. Dabrowska, D.M. (1989). Uniform consistency of the kernel conditional Kaplan-Meier estimate.Annals of Statistics,17, 1157–1167.zbMATHMathSciNetGoogle Scholar
  10. Dabrowska, D.M. (1992a). Variable bandwidth conditional Kaplan-Meiers estimate.Scandinavian Journal of Statistics,19, 351–361.zbMATHMathSciNetGoogle Scholar
  11. Dabrowska, D.M. (1992b). Nonparametric quantiles regression with censored data.Sankhya. A,54, 252–259.zbMATHMathSciNetGoogle Scholar
  12. De Uña, J., W. González-Manteiga and C. Cadarso-Suarez (1997). Bootstrap selection of the smoothing parameter in density estimation under the Koziol-Green model. In:L 1-Statistical Procedures and Related Topics (Y. Dodge ed.) IMS Lecture Notes Monograph Series, vol. 31, Hayward, California, 385–398.Google Scholar
  13. Fleming, T.R. and D.P. Harrington (1991).Counting Processes and Survival Analysis. Wiley-Interscience.Google Scholar
  14. Földes, A. and L. Rejtő (1981). A LIL type result for the product limit estimator.Z. Wahrscheinlichkeitscheorie Verw. Gebiete,56, 75–86.zbMATHCrossRefGoogle Scholar
  15. Gasser, T. and H.G. Müller (1984). Estimating regression functions and their derivatives by the kernel method.Scandinavian Journal of Statistics,11, 171–185.Google Scholar
  16. Gentleman, R. and J. Crowley (1991). Graphical models for censored data.Journal of the American Statistical Association,86, 678–683.CrossRefGoogle Scholar
  17. Georgiev A.A. (1989). Asymptotic properties of the multivariate nadaraya-Watson regression function estimate: the fixed design case.Statistics and Probability Letters,7, 35–40.CrossRefMathSciNetGoogle Scholar
  18. Ghorai, J.K. and L.M. pattanaik (1993). Asymptoptically optimal bandwidth selection of the kernel density estimator under the proportional hazards model.Communications in Statistics-Theory and Methods,22 1383–1401.zbMATHMathSciNetGoogle Scholar
  19. Gijbels, I. and V.K. Klonias (1981). Density estimation under the Koziol-Green model of censoring by penalized likelihood methods.Canadian Journal of Statistics,19, 23–38.MathSciNetGoogle Scholar
  20. Gijbels, I. and N. Veraverbeke (1989). Quantile estimation in the proportional hazards model of random censorship.Communications in Statistics-Theory and Methods,18, 1645–1663.zbMATHMathSciNetGoogle Scholar
  21. González-Manteiga, W. and C. Cadarso-Suárcz (1991). Linear regression with randomly right-censored data using prior nonparametric estimation. InNonparametric Functional Estimation and Related Topics (G. Roussas ed.) Kluwer Academic Press, 315–328.Google Scholar
  22. González-Manteiga, W. and C. Cadarso-Suzárez (1994). Asympotic properties of a generalized Kaplan-Meier estimator with some application.Journal of Nonparametric Statistics,4, 65–78.MathSciNetGoogle Scholar
  23. Henze, N. (1993). A quick omnibus test for the proportional hazards model of random Censorship.Statistics,24, 253–263.zbMATHMathSciNetGoogle Scholar
  24. Herbst, T. (1992). Test of fit with the Koziol-Green model for random censorship.Statistics and Descisions,10, 163–171.MathSciNetGoogle Scholar
  25. Koziol, J.A. and S.B. Green (1976). A Cramér-von Mises statistic for randomly censored data.Biometrika,63, 465–474.zbMATHMathSciNetGoogle Scholar
  26. Lo, S.-H. and K. Singh (1986). The product-limit estimator and the bootstrap: some asymptotic representations.Probability Theory and Related Fields,71, 455–465.zbMATHCrossRefMathSciNetGoogle Scholar
  27. Serfling, R.J. (1980).Approximation Theorems of Mathematical Statistics. Wiley, New York.zbMATHGoogle Scholar
  28. Van Keilegom, I. and N. Veraverbeke (1996). Uniform strong convergence results for the conditional Kaplan-Meier estimator and its quantiles.Communications in Statistics-Theory and Methods 25, 2251–2265.zbMATHMathSciNetGoogle Scholar
  29. Van Keilegom, I. and N. Veraverbeke (1997). Estimation and bootstrap with censored data in fixed design nonparametric regression.Annals of the Institute of Statistical Mathematics,49, 467–491.zbMATHCrossRefMathSciNetGoogle Scholar
  30. Van Keilegom, I. and G. Veraverbeke (1998). Bootstrapping quantiles in a fixed design regression model with censored data.Journal of Statistical Planning and Inference,69, 115–131.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Sociedad Española de Estadistica e Investigación Operativa 2000

Authors and Affiliations

  • Noel Veraverbeke
    • 2
  • Carmen Cadarso-Suárez
    • 1
  1. 1.Departmento de Estadística e Investigación OperativaUniversidad de Santiago de CompostelaSpain
  2. 2.Limburgs Universitair CentrumDiepenbeekBelgium

Personalised recommendations