Advertisement

Test

, Volume 10, Issue 1, pp 147–159 | Cite as

Some notes about nonparametric tests for the equality of two populations

  • Claudio G. Borroni
Article

Abstract

A new nonparametric test for the equality of two populations is proposed. The test is a generalization of the Girone-Cifarelli test (see Girone 1964, and Cifarelli 1974, 1975) which has been shown to be occasionally more powerful than other nonparametric tests, such as the Kolmogorov-Smirnov test. The test is based on a measure of dissimilarity between the sequences of ranks corresponding to the samples drawn from the two populations. The test can be adapted to verify the hypothesis of equality against one-sided and two-sided alternatives. Exact and asymptotic critical values of the test are provided. The asymptotic distribution of the test-statistic underH o shows an interesting link with Brownian motion in [0,1].

Key Words

Brownian motion Girone-Cifarelli test nonparametric tests 

AMS subject classification

62G10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.W. (1962). On the distribution of the two sample Cramèr-Von Mises Criterion.Annals of Mathematical Statistics,33, 1148–1159.Google Scholar
  2. Borroni, C.G. (1999). Una generalizzazione del test di Girone-Cifarelli.Atti della XXXIX Riunione Scientifica della Società Italiana di Statistica 2, 801–808.Google Scholar
  3. Cifarelli, D.M. (1974). Intorno alla distribuzione del test di G. Girone.Giornale degli Economisti e Annali di Economia,33, 283–308.MathSciNetGoogle Scholar
  4. Cifarelli, D.M. (1975). Contributi intorno ad un test per l'omogeneità tra due campioni.Giornale degli Economisti e Annali di Economia,34, 233–249.MathSciNetGoogle Scholar
  5. Girone, G. (1964). Su un indice di omogeneità di due distribuzioni del tipo dell'indice semplice di dissomiglianza.Atti della XXIV Riunione Scientifica della Società Italiana di Statistica 53–78.Google Scholar
  6. Johnson, B. and T. Killeen (1983). An explicit formula for the c.d.f. of the L1 norm of the Brownian bridge.Annals of Probability,11, 807–808.zbMATHMathSciNetGoogle Scholar
  7. Latorre, G. (1977). Confronto tra le funzioni di potenza per il problema di “due campioni”.Saggi di Statistica Metodologica ed Applicata, Contributi del Centro di Studi Statistici dell'Università degli Studi, della Calabria, 31–50.Google Scholar
  8. Shepp, L.A. (1982). On the integral of the absolute value of the pinned Wiener process.Annals of Probability,10, 234–239.zbMATHMathSciNetGoogle Scholar
  9. Shepp, L.A. (1991). Acknowledgement of priority.Annals of Probability,19, 1397.MathSciNetGoogle Scholar
  10. Schmid, F. and M. Trede (1995). A distribution free test for the two sample problem for general alternatives.Computational Statistics and Data Analysis,20, 409–419.zbMATHCrossRefGoogle Scholar
  11. Takács, L. (1993). On the distribution of the integral of the absolute value of the Brownian motion.Annals of Applied Probability,3, 186–197.zbMATHMathSciNetGoogle Scholar

Copyright information

© Sociedad Española de Estadistica e Investigación Operativa 2001

Authors and Affiliations

  1. 1.Dipartimento di Metodi Quantitativi per l'EconomiaUniversità degli Studi, di Milano BicoccaMilanoItaly

Personalised recommendations