Skip to main content
Log in

Nonstationary multivariate process modeling through spatially varying coregionalization

  • Published:
Test Aims and scope Submit manuscript

Abstract

Models for the analysis of multivariate spatial data are receiving increased attention these days. In many applications it will be preferable to work with multivariate spatial processes to specify such models. A critical specification in providing these models is the cross covariance function. Constructive approaches for developing valid cross-covariance functions offer the most practical strategy for doing this. These approaches include separability, kernel convolution or moving average methods, and convolution of covariance functions. We review these approaches but take as our main focus the computationally manageable class referred to as the linear model of coregionalization (LMC). We introduce a fully Bayesian development of the LMC. We offer clarification of the connection between joint and conditional approaches to fitting such models including prior specifications. However, to substantially enhance the usefulness of such modelling we propose the notion of a spatially varying LMC (SVLMC) providing a very rich class of multivariate nonstationary processes with simple interpretation. We illustrate the use of our proposed SVLMC with application to more than 600 commercial property transactions in three quite different real estate markets, Chicago, Dallas and San Diego. Bivariate nonstationary process inodels are developed for income from and selling price of the property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwaal, D. andGelfand, A. E. (2004). Slice Gibbs sampling for simulation based fitting of spatial data models.Statistics and Computing. To appear.

  • Aitchison, J. (1987).The Statistical Analysis of Compositional Data. Chapman & Hall, London.

    Google Scholar 

  • Banerjee, S., Carlin, B. P., andGelfand, A. E. (2004).Hierarchical Modeling and Analysis for Spatial Data. Chapman-Hall CRC Press, Boca Raton.

    MATH  Google Scholar 

  • Banerjee, S. andGelfand, A. E. (2002). Prediction, interpolation and regression for spatial misaligned data points.Sankhya, 64:227–245.

    MathSciNet  Google Scholar 

  • Benjamin, J. andSirmans, G. S. (1991). Determinants of apartment rent.Journal of Real Estate Research, 6:357–379.

    Google Scholar 

  • Berliner, L. M. (2000). Hierarchical bayesian modeling in the environmental sciences.Allgemeine Statistiche Archiv (Journal of the German Statistical Society), 84:141–153.

    MATH  Google Scholar 

  • Box, S. E. P. andTiao, S. C. (1992).Bayesian Inference in Statistical Analysis. John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Brown, P. J., Le, N. D., andZidek, J. V. (1994). Multivariate spatial interpolation and exposure to air pollutants.The Canadian Journal of Statistics, 22(4):489–509.

    MATH  MathSciNet  Google Scholar 

  • Browne, W., Draper, D., andGoldstein, H. (2002). Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation.Computational Statistics and Data Analysis. To appear.

  • Calder, C. A. (2003).Exploring Latent Structure in Spatial Temporal Processes Using Process Convolutions. Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University, Durham, North Carolina, USA.

    Google Scholar 

  • Cressie, N. A. C. andHuang, H. C. (1999). Classes of nonseparable spatio-temporal stationary covariance functions.Journal of the American Statistical Association, 94:1330–1340.

    Article  MATH  MathSciNet  Google Scholar 

  • De Iaco, S., Myers, D. E., andPosa, D. (2003). The linear coregionalization model and the product-sum space-time variogram.Mathematical Geology, 35(14):25–38.

    Article  MathSciNet  Google Scholar 

  • Fuentes, M. (2001). A new high frequency kriging approach for nonstationary environmental processes.Environmetrics, 12:469–483.

    Article  Google Scholar 

  • Fuentes, M. (2002a). Modeling and prediction of nonstationary spatial processes.Biometrika, 2:281–298.

    MATH  MathSciNet  Google Scholar 

  • Fuentes, M. (2002b). Spectral methods for nonstationary spatial processes.Biometrika, 89:197–210.

    Article  MATH  MathSciNet  Google Scholar 

  • Fuentes, M. andSmith, R. L. (2001). A new class of nonstationary spatial models. Tech report, North Carolina State University, Raleigh.

    Google Scholar 

  • Gaspari, G. andCohn, S. E. (1999). Construction of correlation functions in two and three dimensions.Quarterly Journal of the Royal Meterological Society, 125:723–757.

    Article  Google Scholar 

  • Gelfand, A. E., Banerjee, S., andGamerman, D. (2004). Spatial process modelling for univariate and multivariate dynamic spatial data.Environmentrics. Forthcoming.

  • Gelfand, A. E. andGhosh, S. K. (1998). Model choice: A minimum posterior predictive loss approach.Biometrika, 85:1–11.

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfand, A. E. andVounatsou, P. (2002). Proper multivariate conditional autoregressive models for spatial data analysis.Biostatistics, 4:11–25.

    Article  Google Scholar 

  • Geltner, D. andMiller, N. G. (2001).Commercial Real Estate Analysis and Investments. South-Western, Cincinnati.

    Google Scholar 

  • Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data.Journal of the American Statistical Association, 97:590–600.

    Article  MATH  MathSciNet  Google Scholar 

  • Gotway, C. A. andHartford, A. H. (1996). Geotatistical methods for incorporating auxiliary information in the prediction of spatial variables.Journal of Agricultural, Biological, and Environmental Statistics, 1(1):17–39.

    Article  MathSciNet  Google Scholar 

  • Goulard, M. andVoltz, M. (1992). Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix.Mathematical Geology, 24:269–286.

    Article  Google Scholar 

  • Grzebyk, M. andWackernagel, H. (1994). Multivariate analysis and spatial/temporal scales: Real and complex models. InProceedings of the XVIIth International Biometrics Conference, pp. 19–33. Hamilton, Ontario.

  • Harville, D. A. (1997).Matrix Algebra from a Statistician's Perspective. Springer, New York.

    MATH  Google Scholar 

  • Higdon, D. (1998). A process-convolution approach to modeling temperatures in the North Atlantic Ocean.Journal of Environmental and Ecological Statistics, 5:173–190.

    Article  Google Scholar 

  • Higdon, D., Lee, H., andHolloman, C. (2002). Markov chain Monte Carlo based ap-proaches for inference in computational intensive problems. In J. M. Bernardo and J. O. Berger, eds.,Bayesian Statistics 7, Proceedings of the Seventh Valencia Meeting.

  • Higdon, D., Swall, J., andKern, J. (1999). Non-stationary spatial modeling. In J. M. Bernardo and J. O. Berger, eds.,Bayesian Statistics 6, Proceedings of the Sixth Valencia Meeting, pp. 761–768.

  • Kinnard, W. N. (1971).Income Property Valuation. Lexington Press, Lexington, MA.

    Google Scholar 

  • Liu, F. (2000).Bayesian Time Series: Analysis Methods Using Simulation Based Computation. Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University, Durham, North Carolina, USA.

    Google Scholar 

  • Lusht, K. M. (1997).Real Estate Valuation. Irwin, Chicago.

    Google Scholar 

  • Majumdar, A. andGelfand, A. E. (2004). Multivariate spatial modeling using convolved covariance functions. Tech report, Institute of Statistics and Decision Sciences, Duke University, USA. Submited.

    Google Scholar 

  • Mardia, K. V. (1988). Multi-dimensional multivariate Gaussian Markov random fields with application to image processing.Journal of Multivariate Analysis, 24:265–284.

    Article  MATH  MathSciNet  Google Scholar 

  • Mardia, K. V. andGoodall, C. R. (1993). Spatial-temporal analysis of multivariate environmental monitoring data. In G. P. Patil and C. R. Rao, eds.,Multivariate Environmental Statistics, pp. 347–386. Elsevier Science Publishers.

  • Matérn, B. (1986).Spatial variation, vol. 36 ofLecture Notes in Statistics. Springer-Verlag, Berlin, 2nd ed.

    Google Scholar 

  • Matheron, G. (1982). Pour une analyse krigeante des données régionaliśees. Tech report, Ecole Nationale Supérieure des Mines de Paris, Paris.

    Google Scholar 

  • Muirhead, R. J. (1982).Aspects of Multivariate Statistica Theory, John Wiley and Sons, New York.

    Google Scholar 

  • Neal, R. (2002). Slice sampling.Annals of Statistics. To appear.

  • Paciorek, C. J. andSchervish, M. J. (2004). Nonstationary covariance functions for Gaussian process regression.Advances in Neural Information Processing Systems, 16:1–8.

    Google Scholar 

  • Royle, J. A. andBerliner, L. M. (1999). A hierarchical approach to multivariate spatial modeling and prediction.Journal of Agricultural, Biological and Environmental Statistics, 4:29–56.

    Article  MathSciNet  Google Scholar 

  • Ryti, R. T., Neptune, B., andGroskinsky, B. (1992). Superfund soil cleanup: Applying the Piazza Road remediation plan.Environmental testing and Analysis, 1:26–31.

    Google Scholar 

  • Sansó, B. andSchmidt, A. M. (2004). Spatio-temporal models based on discrete convolutions. Tech. Rep. ams2004-06, Department of Applied Mathematics and Statistics, University of California Santa Cruz.

    Google Scholar 

  • Schmidt, A. andGelfand, A. E. (2003). A Bayesian coregionalization model for multivariate pollutant data.Journal of Geophysics Research-Atmospheres, 108(D24):8783.

    Article  Google Scholar 

  • Schmidt, A. M. andO'Hagan, A. (2003). Bayesian inference for nonstationary spatial covariance structure via spatial deformations.Journal of the Royal Statistical Society, 65:745–758.

    MathSciNet  Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N., andGilks, W. (1996). Bugs 0.5 Bayesian inference using Gibbs sampling. Manual, version ii, MRC Biostatistics Unit, nstitute of Public Health, Cambridge, UK.

    Google Scholar 

  • Stein, M. L. (1999).Interpolation of Spatial Data, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Sun, W., Le, N. D., Zidek, J. V., andBurnett, R. (1998). Assessment of a Bayesian multivariate interpolation approach for health impact studies.Environmetrics, 9:565–586.

    Article  Google Scholar 

  • Titman, S., Tompaidis, S., andTsyplakov, S. (2001). Market imperfections, investment optionality and default spreads. Technical report, University of Texas, Austin.

    Google Scholar 

  • Vargas-Guzmán, J. A., Warrick, A. W., andMyers, D. (2002). Coregionalization by linear combination of nonorthogonal components.Mathematical Geology, 34:405–419.

    Article  MATH  MathSciNet  Google Scholar 

  • Ver Hoef, J. M. andBarry, R. D. (1998). Constructing and fitting models for cokriging and multivariable spatial prediction.Journal of Statistical Planning and Inference, 69:275–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Ver Hoef, J. M. C., C. N. A., andBarry, R. P. (2004). Flexible spatial models based on the fast Fourier transform (FFT) for cokriging.Journal of Computational and Graphical Statistics. To appear.

  • Wackernagel, H. (2003).Multivariate Geostatistics—An Introduction with Applications. Springer-Verlag, New York, 3rd ed.

    MATH  Google Scholar 

  • West, M., andHarrison, J. (1989).Bayesian Forecasting and Dynamic Models. Springer Verlag, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. Gelfand.

Additional information

The work of the first and second authors was supported in part by NIH grant R01ES07750-06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelfand, A.E., Schmidt, A.M., Banerjee, S. et al. Nonstationary multivariate process modeling through spatially varying coregionalization. Test 13, 263–312 (2004). https://doi.org/10.1007/BF02595775

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595775

Key Words

AMS subject classification

Navigation