Test

, Volume 13, Issue 2, pp 263–312 | Cite as

Nonstationary multivariate process modeling through spatially varying coregionalization

  • Alan E. Gelfand
  • Alexandra M. Schmidt
  • Sudipto Banerjee
  • C. F. Sirmans
Article

Abstract

Models for the analysis of multivariate spatial data are receiving increased attention these days. In many applications it will be preferable to work with multivariate spatial processes to specify such models. A critical specification in providing these models is the cross covariance function. Constructive approaches for developing valid cross-covariance functions offer the most practical strategy for doing this. These approaches include separability, kernel convolution or moving average methods, and convolution of covariance functions. We review these approaches but take as our main focus the computationally manageable class referred to as the linear model of coregionalization (LMC). We introduce a fully Bayesian development of the LMC. We offer clarification of the connection between joint and conditional approaches to fitting such models including prior specifications. However, to substantially enhance the usefulness of such modelling we propose the notion of a spatially varying LMC (SVLMC) providing a very rich class of multivariate nonstationary processes with simple interpretation. We illustrate the use of our proposed SVLMC with application to more than 600 commercial property transactions in three quite different real estate markets, Chicago, Dallas and San Diego. Bivariate nonstationary process inodels are developed for income from and selling price of the property.

Key Words

Cross-covariance function linear model of coregionalization matric-variate Wishart spatial process prior parametrization spatial range spatially varying process model 

AMS subject classification

62M30 62F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwaal, D. andGelfand, A. E. (2004). Slice Gibbs sampling for simulation based fitting of spatial data models.Statistics and Computing. To appear.Google Scholar
  2. Aitchison, J. (1987).The Statistical Analysis of Compositional Data. Chapman & Hall, London.Google Scholar
  3. Banerjee, S., Carlin, B. P., andGelfand, A. E. (2004).Hierarchical Modeling and Analysis for Spatial Data. Chapman-Hall CRC Press, Boca Raton.MATHGoogle Scholar
  4. Banerjee, S. andGelfand, A. E. (2002). Prediction, interpolation and regression for spatial misaligned data points.Sankhya, 64:227–245.MathSciNetGoogle Scholar
  5. Benjamin, J. andSirmans, G. S. (1991). Determinants of apartment rent.Journal of Real Estate Research, 6:357–379.Google Scholar
  6. Berliner, L. M. (2000). Hierarchical bayesian modeling in the environmental sciences.Allgemeine Statistiche Archiv (Journal of the German Statistical Society), 84:141–153.MATHGoogle Scholar
  7. Box, S. E. P. andTiao, S. C. (1992).Bayesian Inference in Statistical Analysis. John Wiley and Sons, New York.MATHGoogle Scholar
  8. Brown, P. J., Le, N. D., andZidek, J. V. (1994). Multivariate spatial interpolation and exposure to air pollutants.The Canadian Journal of Statistics, 22(4):489–509.MATHMathSciNetGoogle Scholar
  9. Browne, W., Draper, D., andGoldstein, H. (2002). Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation.Computational Statistics and Data Analysis. To appear.Google Scholar
  10. Calder, C. A. (2003).Exploring Latent Structure in Spatial Temporal Processes Using Process Convolutions. Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University, Durham, North Carolina, USA.Google Scholar
  11. Cressie, N. A. C. andHuang, H. C. (1999). Classes of nonseparable spatio-temporal stationary covariance functions.Journal of the American Statistical Association, 94:1330–1340.MATHCrossRefMathSciNetGoogle Scholar
  12. De Iaco, S., Myers, D. E., andPosa, D. (2003). The linear coregionalization model and the product-sum space-time variogram.Mathematical Geology, 35(14):25–38.CrossRefMathSciNetGoogle Scholar
  13. Fuentes, M. (2001). A new high frequency kriging approach for nonstationary environmental processes.Environmetrics, 12:469–483.CrossRefGoogle Scholar
  14. Fuentes, M. (2002a). Modeling and prediction of nonstationary spatial processes.Biometrika, 2:281–298.MATHMathSciNetGoogle Scholar
  15. Fuentes, M. (2002b). Spectral methods for nonstationary spatial processes.Biometrika, 89:197–210.MATHCrossRefMathSciNetGoogle Scholar
  16. Fuentes, M. andSmith, R. L. (2001). A new class of nonstationary spatial models. Tech report, North Carolina State University, Raleigh.Google Scholar
  17. Gaspari, G. andCohn, S. E. (1999). Construction of correlation functions in two and three dimensions.Quarterly Journal of the Royal Meterological Society, 125:723–757.CrossRefGoogle Scholar
  18. Gelfand, A. E., Banerjee, S., andGamerman, D. (2004). Spatial process modelling for univariate and multivariate dynamic spatial data.Environmentrics. Forthcoming.Google Scholar
  19. Gelfand, A. E. andGhosh, S. K. (1998). Model choice: A minimum posterior predictive loss approach.Biometrika, 85:1–11.MATHCrossRefMathSciNetGoogle Scholar
  20. Gelfand, A. E. andVounatsou, P. (2002). Proper multivariate conditional autoregressive models for spatial data analysis.Biostatistics, 4:11–25.CrossRefGoogle Scholar
  21. Geltner, D. andMiller, N. G. (2001).Commercial Real Estate Analysis and Investments. South-Western, Cincinnati.Google Scholar
  22. Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data.Journal of the American Statistical Association, 97:590–600.MATHCrossRefMathSciNetGoogle Scholar
  23. Gotway, C. A. andHartford, A. H. (1996). Geotatistical methods for incorporating auxiliary information in the prediction of spatial variables.Journal of Agricultural, Biological, and Environmental Statistics, 1(1):17–39.CrossRefMathSciNetGoogle Scholar
  24. Goulard, M. andVoltz, M. (1992). Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix.Mathematical Geology, 24:269–286.CrossRefGoogle Scholar
  25. Grzebyk, M. andWackernagel, H. (1994). Multivariate analysis and spatial/temporal scales: Real and complex models. InProceedings of the XVIIth International Biometrics Conference, pp. 19–33. Hamilton, Ontario.Google Scholar
  26. Harville, D. A. (1997).Matrix Algebra from a Statistician's Perspective. Springer, New York.MATHGoogle Scholar
  27. Higdon, D. (1998). A process-convolution approach to modeling temperatures in the North Atlantic Ocean.Journal of Environmental and Ecological Statistics, 5:173–190.CrossRefGoogle Scholar
  28. Higdon, D., Lee, H., andHolloman, C. (2002). Markov chain Monte Carlo based ap-proaches for inference in computational intensive problems. In J. M. Bernardo and J. O. Berger, eds.,Bayesian Statistics 7, Proceedings of the Seventh Valencia Meeting.Google Scholar
  29. Higdon, D., Swall, J., andKern, J. (1999). Non-stationary spatial modeling. In J. M. Bernardo and J. O. Berger, eds.,Bayesian Statistics 6, Proceedings of the Sixth Valencia Meeting, pp. 761–768.Google Scholar
  30. Kinnard, W. N. (1971).Income Property Valuation. Lexington Press, Lexington, MA.Google Scholar
  31. Liu, F. (2000).Bayesian Time Series: Analysis Methods Using Simulation Based Computation. Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University, Durham, North Carolina, USA.Google Scholar
  32. Lusht, K. M. (1997).Real Estate Valuation. Irwin, Chicago.Google Scholar
  33. Majumdar, A. andGelfand, A. E. (2004). Multivariate spatial modeling using convolved covariance functions. Tech report, Institute of Statistics and Decision Sciences, Duke University, USA. Submited.Google Scholar
  34. Mardia, K. V. (1988). Multi-dimensional multivariate Gaussian Markov random fields with application to image processing.Journal of Multivariate Analysis, 24:265–284.MATHCrossRefMathSciNetGoogle Scholar
  35. Mardia, K. V. andGoodall, C. R. (1993). Spatial-temporal analysis of multivariate environmental monitoring data. In G. P. Patil and C. R. Rao, eds.,Multivariate Environmental Statistics, pp. 347–386. Elsevier Science Publishers.Google Scholar
  36. Matérn, B. (1986).Spatial variation, vol. 36 ofLecture Notes in Statistics. Springer-Verlag, Berlin, 2nd ed.Google Scholar
  37. Matheron, G. (1982). Pour une analyse krigeante des données régionaliśees. Tech report, Ecole Nationale Supérieure des Mines de Paris, Paris.Google Scholar
  38. Muirhead, R. J. (1982).Aspects of Multivariate Statistica Theory, John Wiley and Sons, New York.Google Scholar
  39. Neal, R. (2002). Slice sampling.Annals of Statistics. To appear.Google Scholar
  40. Paciorek, C. J. andSchervish, M. J. (2004). Nonstationary covariance functions for Gaussian process regression.Advances in Neural Information Processing Systems, 16:1–8.Google Scholar
  41. Royle, J. A. andBerliner, L. M. (1999). A hierarchical approach to multivariate spatial modeling and prediction.Journal of Agricultural, Biological and Environmental Statistics, 4:29–56.CrossRefMathSciNetGoogle Scholar
  42. Ryti, R. T., Neptune, B., andGroskinsky, B. (1992). Superfund soil cleanup: Applying the Piazza Road remediation plan.Environmental testing and Analysis, 1:26–31.Google Scholar
  43. Sansó, B. andSchmidt, A. M. (2004). Spatio-temporal models based on discrete convolutions. Tech. Rep. ams2004-06, Department of Applied Mathematics and Statistics, University of California Santa Cruz.Google Scholar
  44. Schmidt, A. andGelfand, A. E. (2003). A Bayesian coregionalization model for multivariate pollutant data.Journal of Geophysics Research-Atmospheres, 108(D24):8783.CrossRefGoogle Scholar
  45. Schmidt, A. M. andO'Hagan, A. (2003). Bayesian inference for nonstationary spatial covariance structure via spatial deformations.Journal of the Royal Statistical Society, 65:745–758.MathSciNetGoogle Scholar
  46. Spiegelhalter, D., Thomas, A., Best, N., andGilks, W. (1996). Bugs 0.5 Bayesian inference using Gibbs sampling. Manual, version ii, MRC Biostatistics Unit, nstitute of Public Health, Cambridge, UK.Google Scholar
  47. Stein, M. L. (1999).Interpolation of Spatial Data, Springer-Verlag, New York.MATHGoogle Scholar
  48. Sun, W., Le, N. D., Zidek, J. V., andBurnett, R. (1998). Assessment of a Bayesian multivariate interpolation approach for health impact studies.Environmetrics, 9:565–586.CrossRefGoogle Scholar
  49. Titman, S., Tompaidis, S., andTsyplakov, S. (2001). Market imperfections, investment optionality and default spreads. Technical report, University of Texas, Austin.Google Scholar
  50. Vargas-Guzmán, J. A., Warrick, A. W., andMyers, D. (2002). Coregionalization by linear combination of nonorthogonal components.Mathematical Geology, 34:405–419.MATHCrossRefMathSciNetGoogle Scholar
  51. Ver Hoef, J. M. andBarry, R. D. (1998). Constructing and fitting models for cokriging and multivariable spatial prediction.Journal of Statistical Planning and Inference, 69:275–294.MATHCrossRefMathSciNetGoogle Scholar
  52. Ver Hoef, J. M. C., C. N. A., andBarry, R. P. (2004). Flexible spatial models based on the fast Fourier transform (FFT) for cokriging.Journal of Computational and Graphical Statistics. To appear.Google Scholar
  53. Wackernagel, H. (2003).Multivariate Geostatistics—An Introduction with Applications. Springer-Verlag, New York, 3rd ed.MATHGoogle Scholar
  54. West, M., andHarrison, J. (1989).Bayesian Forecasting and Dynamic Models. Springer Verlag, New York.MATHGoogle Scholar

Copyright information

© Sociedad Española de Estadistica e Investigación Operativa 2004

Authors and Affiliations

  • Alan E. Gelfand
    • 1
  • Alexandra M. Schmidt
    • 2
  • Sudipto Banerjee
    • 3
  • C. F. Sirmans
    • 4
  1. 1.Institute of Statistics and Decision SciencesDuke UniversityUSA
  2. 2.Instituto de MatemáticaUniversidade Federal do Rio de JaneiroBrazil
  3. 3.Division of Biostatistics, School of Public HealthUniversity of MinnesotaUSA
  4. 4.Center for Real Estate and Urban Economic StudiesUniversity of ConnecticutUSA

Personalised recommendations