Advertisement

Metallurgical and Materials Transactions A

, Volume 27, Issue 11, pp 3612–3620 | Cite as

Solidification of an alloy 625 weld overlay

  • J. N. DuPont
Article

Abstract

The solidification behavior (microsegregation, secondary phase formation, and solidification temperature range) of an Alloy 625 weld overlay deposited on 2.25Cr - 1Mo steel by gas metal arc welding was investigated by light and electron optical microscopy, electron microprobe, and differential thermal analysis techniques. The overlay deposit was found to terminate solidification at ≈ 1216 °C by aγ/Laves eutectic-type reaction. The Laves phase was highly enriched in Nb, Mo, and Si. The solidification reaction and microsegregation potential of major alloying elements in the overlay deposit are compared to other Nb-bearing Ni base alloys and found to be very similar to those for Alloy 718. Solidification cracks observed in the overlay were attributed to the wide solidification temperature range (≈170 °C) and formation of interdendritic (γ+Laves) constituent. Reasonable agreement is obtained between the calculated and measured volume percent (γ+Laves) constituent with the Scheil equation by treating the overlay system as a simpleγ-Nb “binary” and using an experimentally determinedk Nb value from electron microprobe data.

Keywords

Material Transaction Differential Thermal Analysis Weld Metal Lave Phase Dendrite Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Cieslak, T.J. Headley, T. Kollie, and A.D. Romig, Jr.Metall. Trans. A, 1988, vol. 19A, pp. 2319–31.Google Scholar
  2. 2.
    M.J. Cieslak:Weld. J., 1991, vol. 70, pp. 49s-56s.Google Scholar
  3. 3.
    M.J. Cieslak, G.A. Knorovsky, T.J. Headley, and A.D. Romig, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 2107–16.Google Scholar
  4. 4.
    M.J. Cieslak, C.R. Hills, and T.J. Headley: inMicrobeam Analysis, A.D. Romig and W.F. Chalmers, eds., San Francisco Press, San Francisco, CA, 1986, pp. 69–73.Google Scholar
  5. 5.
    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Roming, Jr., and W.F. Hammetter:Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.Google Scholar
  6. 6.
    R.M. Nugent:Weld. J., 1986, vol. 65 (6), pp. 33–39.Google Scholar
  7. 7.
    B.F. Levin, J.N. DuPont, and A.R. Marder: inElevated Temperature Coatings: Science and Technology I, N.B. Dahotre, J.M. Hampikian, and J.J. Stiglich, eds., TMS, Warrendale, PA, 1995, pp. 325–40.Google Scholar
  8. 8.
    C.S. Dimbylow:Met. Construction, 1985, Jan., pp. 35-39.Google Scholar
  9. 9.
    A.V. Bernst and P.H. Dargent:Met. Construction, 1983, Dec., pp. 730–33.Google Scholar
  10. 10.
    Q.H. Zhao, Y.P. Gao, J.H. Devletian, J.M. McCarthy, and W.E. Wood:International Trends in Welding Science and Technology, Proc. 3rd Int. Conf., S.A. David and J.M. Vitek, eds., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 339–43.Google Scholar
  11. 11.
    E.S. Robitz, Jr. and D.P. Edmonds:Abstracts of Papers of 67th American Welding Society Meeting, American Welding Society, Miami, FL, pp. 136–38.Google Scholar
  12. 12.
    K. Kanaya and S. Okayama:J. Appl. Phys. D, 1972, No. 5, p. 43.Google Scholar
  13. 13.
    K.F.J. Heinrich:Microbeam Analysis, Proc. 21st Int. Conf., A.D. Romig, Jr. and W.F. Chambers, eds., Albuquerque, NM, 1986, pp. 279–80.Google Scholar
  14. 14.
    J.C. Boreland:Br. Weld. J., 1960, vol. 7, pp. 508–12.Google Scholar
  15. 15.
    Y. Arata, F. Matsuda, and S. Katayama:Trans. Japanese Weld. Res. Inst., 1977, pp. 105–16.Google Scholar
  16. 16.
    J.A. Brooks:Proceedings of Weldability of Materials, Oct 8–12, 1990, ASM INTERNATIONAL, Materials Park, OH, pp. 41–48.Google Scholar
  17. 17.
    S.A. David and J.M. Vitek:Int. Mater. Rev., 1989, vol. 34, pp. 213–45.Google Scholar
  18. 18.
    M.J. Cieslak, T.J. Headley, and A.D. Roming, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 2035–47.Google Scholar
  19. 19.
    M.J. Cieslak, T.J. Headley, G.A. Knorovsky, A.D. Romig, Jr., and T. Kollie:Metall. Trans. A, 1990, vol. 21A, pp. 479–88.Google Scholar
  20. 20.
    Y. Nakao, H. Ohshige, S. Koga, H. Nishihara, and J. Sugitani:J. Jpn. Weld. Soc., 1982, vol. 51, pp. 989–95.Google Scholar
  21. 21.
    Metals Handbook, 8th ed., ASM, Metals Park, OH, 1973, vol. 8, p. 282.Google Scholar
  22. 22.
    E. Scheil:Z. Metallkd., 1942, vol. 34, p. 70.Google Scholar
  23. 23.
    H.D. Brody and M.C. Flemings:Trans. AIME, 1966, vol. 236, pp. 615–23.Google Scholar
  24. 24.
    D. Rosenthal:Trans. ASME, 1946, vol. 68, pp. 849–66.Google Scholar
  25. 25.
    G.H. Geiger and D.R. Poirier:Transport Phenomena in Metallurgy, Addison-Wesley Publishing Company, Reading, MA, 1973, p. 193.Google Scholar
  26. 26.
    J.N. DuPont and A.R. Marder:Weld. J., vol. 74, pp. 406s–416s.Google Scholar
  27. 27.
    S. Kurokawa, J.E. Ruzzante, A.M. Hey, and F. Dyment:Met. Sci., 1983, vol. 17, pp. 433–38.Google Scholar
  28. 28.
    J.N. DuPont and A.R. Marder:Metall. Mater. Trans. B, 1996, vol. 27B, accepted for publication.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1996

Authors and Affiliations

  • J. N. DuPont
    • 1
  1. 1.Energy Research CenterLehigh UniversityBethlehem

Personalised recommendations