TEST

, 15:1 | Cite as

Mixed model prediction and small area estimation

Article

Abstract

Over the last three decades, mixed models have been frequently used in a wide range of small area applications. Such models offer great flexibilities in combining information from various sources, and thus are well suited for solving most small area estimation problems. The present article reviews major research developments in the classical inferential approach for linear and generalized linear mixed models that are relevant to different issues concerning small area estimation and related problems.

Key Words

Benchmarking borrowing strength design-consistency mean squared errors empirical Bayes EBLUP generalized linear mixed models higher order asymptotics resampling methods sample surveys variance components 

AMS subject classification

62C12 62C25 62G09 62D05 62F11 62F15 

References

  1. Arora, V., Lahiri, P., andMukherjee, K. (1997). Empirical Bayes estimation of finite population means from complex surveys.Journal of the American Statistical Association, 92:1555–1562.MathSciNetMATHCrossRefGoogle Scholar
  2. Barndorff-Nielsen, O. (1983). On a formula for the distribution of the maximum likelihood estimator.Biometrika, 70: 343–365.MathSciNetMATHCrossRefGoogle Scholar
  3. Basu, R., Ghosh, J. K., andMukerjee, R. (2003). Empirical Bayes prediction intervals in a normal regression model: Higher order asymptotics.Statistics & Probability Letters, 63:197–203.MathSciNetMATHCrossRefGoogle Scholar
  4. Battese, G. E., Harter, R. M., andFuller, W. A. (1988). An error-components model for prediction of county crop areas using survey and satellite data.Journal of the American Statistical Association, 80:28–36.CrossRefGoogle Scholar
  5. Beckman, R. J., Nachtsheim, C. J., andCook, R. D. (1987). Diagnostics for mixed-model analysis of variance.Technometrics, 29:413–426.MathSciNetMATHGoogle Scholar
  6. Bell, W. (2001). Discussion with “Jackknife in the Fay-Herriott model with an example”. InProceeding of the Seminar on Funding Opportunity in Survey Research, pp. 98–104.Google Scholar
  7. Booth, J. G., andHobert, J. P. (1998). Standard errors of predictors in generalized linear mixed models.Journal of the American Statistical Association, 93:262–272.MathSciNetMATHCrossRefGoogle Scholar
  8. Booth, J. G., andHobert, J. P. (1999). Maximum generalized linear mixed model likelihood with an automated Monte Carlo EM algorithm.Journal of the Royal Statistical Society. Series B, 61:265–285.MATHCrossRefGoogle Scholar
  9. Brackstone, G. J. (1987). Small area data: policy issues and technical challenges. In R. Platek, J. N. K. Rao, C. E. Sarndal, and M. P. Singh, eds.,Small Area Statistics, pp. 3–20. John Wiley & Sons, New York.Google Scholar
  10. Breslow, N. E., andClayton, D. G. (1993). Approximate inference in generalized linear mixed models.Journal of the American Statistical Association, 88:9–25.MATHGoogle Scholar
  11. Butar, F. B. (1997).Empirical Bayes Methods in Survey Sampling. PhD Thesis, Dept. of Mathematics and Statistics, University of Nebraska-Lincoln.Google Scholar
  12. Butar, F. B., andLahiri, P. (2003). On measures of uncertainty of empirical Bayes small area estimators. Model selection, model diagnostics, empirical Bayes and hierarchical Bayes, Special Issue II (Lincoln, NE, 1999).Journal of Statistical Planning and Inference, 112 (1–2):63–76.MathSciNetMATHCrossRefGoogle Scholar
  13. Calvin, J. A., andSedransk, J. (1991). Bayesian and frequentist predictive inference for the patterns of care studies.Journal of the American Statistical Association, 86:36–48.CrossRefGoogle Scholar
  14. Carlin, B. P., andGelfand, A. (1990). Approaches for empirical Bayes confidence intervals.Journal of the American Statistical Association, 85:105–114.MathSciNetMATHCrossRefGoogle Scholar
  15. Carlin, B. P., andGelfand, A. (1991). A sample reuse method for accurate parametric empirical Bayes confidence intervals.Journal of the Royal Statistical Society. Series B, 53:189–200.MATHGoogle Scholar
  16. Carlin, B. P., andLouis, T. A. (1996).Bayes and Empirical Bayes Methods for Data Analysis. Chapman and Hall, London.MATHGoogle Scholar
  17. Carter, G. M., andRolph, J. E. (1974). Empirical Bayes methods applied to estimating fire alarm probabilities.Journal of the American Statistical Association, 69:880–885.CrossRefGoogle Scholar
  18. Chatterjee, S. andLahiri, P. (2002). Parametric bootstrap confidence interval in small area estimation problems. Unpublished manuscript.Google Scholar
  19. Chaudhuri, A. (1994). Small domain statistics: a review.Statistica Neerlandica, 48:215–236.MATHCrossRefGoogle Scholar
  20. Chen, S. andLahiri, P. (2002). A weighted jackknife MSPE estimator in small area estimation. InProceedings of the Survey Research Methods Section, pp. 473–477. American Statistical Association.Google Scholar
  21. Chen, S. andLahiri, P. (2003a). A comparison of different MSPE estimators of EBLUP for the Fay-Herriot model. InProceedings of the Survey Research Methods Section, pp. 905–911. American Statistical Association.Google Scholar
  22. Chen, S. andLahiri, P. (2003b). Jackknifing the mean square prediction error of EBLUP for the Fay-Herriot model. Unpublished manuscript.Google Scholar
  23. Chen, S. andLahiri, P. (2005). On mean squared prediction error estimation in small area estimation problems. InProceedings of the Survey Research Methods Section. American Statistical Association. To appear.Google Scholar
  24. Chen, S., Lahiri, P., andRao, J. N. K. (2005). On mean square prediction error estimation for a non-normal Fay-Herriot model. Unpublished manuscript.Google Scholar
  25. Christensen, R., Pearson, L. M., andJohnson, W. (1992). Case-deletion diagnostics for mixed models.Technometrics, 34:38–45.MathSciNetMATHCrossRefGoogle Scholar
  26. Christiansen, C. L. andMorris, C. N. (1994). README document, June 7, 1994, a seven-page latex tutorial for PRIMM. Available through StatLib, stat@lib.stat.cmu.edu.Google Scholar
  27. Christiansen, C. L. andMorris, C. N. (1996). Hierarchical Poisson regression modeling. In D. Berry and D. Stangl, eds.,Bayesian Biostatistics, pp. 467–501. Marcel Dekker, New York.Google Scholar
  28. Christiansen, C. L. andMorris, C. N. (1997). Hierarchical Poisson regression modeling.Journal of the American Statistical Association, 92:618–632.MathSciNetMATHCrossRefGoogle Scholar
  29. Citro, C. F., Cohen, M. L., Kalton, G., andWest, K. K. (1997).Small-area estimates of school-age children in poverty: Interim report I-evaluation of 1993 county estimates for title I allocation. National Academy Press, Washington.Google Scholar
  30. Cox, D. R. (1975). Prediction intervals and empirical Bayes confidence intervals. In J. Gani, ed.,Perspectives in Probability and Statistics (Papers in honor of M. S. Bartlett) pp. 47–55. National Academic Press, Washington.Google Scholar
  31. Crouch, E. A. C. andSpiegelman, D. (1990). The evaluation of integrals of the form ∫f(t)exp(−t 2)dt: Application to logistic normal models.Journal of the American Statistical Association, 85:464–469.MathSciNetMATHGoogle Scholar
  32. Das, K., Jiang, J., andRao, J. N. K. (2004). Mean squared error of empirical predictor.The Annals of Statistics, 32:818–840.MathSciNetMATHCrossRefGoogle Scholar
  33. Datta, G. S. andGhosh, M. (1991). Bayesian prediction in linear models: applications to small area estimation.The Annals of Statistics, 19:1746–1770.MathSciNetMATHGoogle Scholar
  34. Datta, G. S., Ghosh, M., Smith, D. D., andLahiri, P. (2002). On an asymptotic theory of conditional and unconditional coverage probabilities of empirical Bayes confidence intervals.Scandinavian Journal of Statistics, 29:139–152.MathSciNetMATHCrossRefGoogle Scholar
  35. Datta, G. S. andLahiri, P. (2000). A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems.Statistica Sinica, 10:613–627.MathSciNetMATHGoogle Scholar
  36. Datta, G. S. andLahiri, P. (2001). Discussions on a paper by Efron and Gous. InModel Selection, Vol. 38 ofIMS Lecture Notes/Monograph.Google Scholar
  37. Datta, G. S., Rao, J. N. K., andSmith, D. D. (2005). On measuring the variability of small area estimators under a basic area level model.Biometrika, 92:183–196.MathSciNetMATHCrossRefGoogle Scholar
  38. Dempster, A. P. andRyan, L. M. (1985). Weighted normal plots.Journal of the American Statistical Association, 80:845–850.CrossRefGoogle Scholar
  39. Diggle, P. J., Liang, K. Y., andZeger, S. L. (1996).Analysis of Longitudinal Data. Oxford University Press, Oxford.MATHGoogle Scholar
  40. Efron, B.. (1975). Biased versus unbiased estimation.Advances in Mathematics, 16:259–277.MathSciNetMATHCrossRefGoogle Scholar
  41. Efron, B. andMorris, C. N. (1972). Limiting the risk of Bayes and empirical Bayes estimators. Part II: the empirical Bayes case.Journal of the American Statistical Association, 67:130–139.MathSciNetMATHGoogle Scholar
  42. Efron, B., andMorris, C. N. (1973). Stein's estimation rule and its competitors—an empirical Bayes approach.Journal of the American Statistical Association, 68:117–130.MathSciNetMATHGoogle Scholar
  43. Efron, B. andMorris, C. N. (1975). Data analysis using Stein's estimator and its generalizations.Journal of the American Statistical Association, 70:311–319.MATHCrossRefGoogle Scholar
  44. Fabrizi, E. andLahiri, P. (2004). A new approximation to the Bayes information criterion in finite population sampling. Unpublished manuscript.Google Scholar
  45. Fay, R. E. andHerriot, R. A. (1979). Estimates of income for small places: an application of James-Stein procedures to census data.Journal of the American Statistical Association, 74:269–277.MathSciNetCrossRefGoogle Scholar
  46. Fuller, W. A. (1990). Prediction of true values for the measurement error model.Contemporary Mathematics, 112:41–57.MathSciNetCrossRefGoogle Scholar
  47. Gelman, A., Carlin, J. B., Stern, H. S., andRubin, D. B. (1995).Bayesian Data Analysis. Chapman and Hall, London.MATHGoogle Scholar
  48. Gershunskaya, J. B. andLahiri, P. (2005). Variance estimation for domains in the U.S. Current Employment Statistics Program. InProceedings of the Survey Research Methods Section. American Statistical Association. To appear.Google Scholar
  49. Ghosh, M. andLahiri, P. (1987). Robust empirical Bayes estimation of means from stratified samples.Journal of the American Statistical Association, 82:1153–1162.MathSciNetMATHCrossRefGoogle Scholar
  50. Ghosh, M. andLahiri, P. (1992). A hierarchical Bayes approach to small area estimation with auxiliary information (with discussion). InBayesian Analysis in Statistics and Econometrics, pp. 107–125. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  51. Ghosh, M. andMeeden, G. (1986). Empirical Bayes estimation in finite population sampling.Journal of the American Statistical Association, 81:1058–1062.MathSciNetMATHCrossRefGoogle Scholar
  52. Ghosh, M. andMeeden, G. (1997).Bayesian Methods for Finite Population Sampling. Chapman and Hall, London.MATHCrossRefGoogle Scholar
  53. Ghosh, M., Natarajan, K., Stroud, T. W. F., andCarlin, B. P. (1998). Generalized linear models for small-area estimation.Journal of the American Statistical Association, 93:273–282.MathSciNetMATHCrossRefGoogle Scholar
  54. Ghosh, M. andRao, J. N. K. (1994). Small area estimation: An appraisal (with discussion).Statistical Science, 9:55–93.MathSciNetMATHCrossRefGoogle Scholar
  55. Glickman, H. andPfeffermann, D. (2004). Mean square error approximation in small area estimation by use of parametric and nonparametric bootstrap. InProceedings of the Survey Research Methods Section. American Statistical Association. To appear.Google Scholar
  56. Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalised least squares.Biometrika, 73:43–56.MathSciNetMATHCrossRefGoogle Scholar
  57. Hartley, H. O andRao, J. N. K. (1967). Maximum likelihood estimation for the mixed analysis of variance model.Biometrika, 54:93–108.MathSciNetMATHCrossRefGoogle Scholar
  58. Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts.Biometrika, 61:383–385.MathSciNetMATHCrossRefGoogle Scholar
  59. Harville, D. A. (1977). Maximum likelihood approaches to variance components estimation and related problems.Journal of the American Statistical Association, 72:320–340.MathSciNetMATHCrossRefGoogle Scholar
  60. Harville, D. A. (1990). BLUP (best linear unbiased prediction) and beyond. In D. Gianola and K. Hammond, eds,Advances in Statistical Methods for Genetic Improvement of Livestock, pp. 239–276. Springer-Verlag, New York.CrossRefGoogle Scholar
  61. Harville, D. A. (1991). Comment on Robinson: estimation of random effects.Statistical Science 6:35–39.CrossRefGoogle Scholar
  62. Henderson, C. R. (1948).Estimation of general specific and maternal combining abilities in crosses among inbred lines of swine. PhD Thesis, Iowa State University, Ames, Iowa.Google Scholar
  63. Henderson, C. R. (1950). Estimation of genetic parameters (abstract).The Annals of Mathematical Statistics, 21:309–310.Google Scholar
  64. Henderson, C. R. (1953). Estimation of variance and covariance components.Biometrics, 9:226–252.MathSciNetCrossRefGoogle Scholar
  65. Henderson, C. R. (1973). Sire evaluation and genetic trends. InProceedings of the Animal Breeding and Genetics Symposium in Honor of Dr. Jay L. Lush, pp. 10–41. Amer. Soc. Animal Sci.-Amer. Dairy Sci. Assoc.-Poultry Sci. Assoc., Champaign, IL.Google Scholar
  66. Henderson, C. R., Kempthorne, O., Searle, S. R., andvon Krosigk, C. N. (1959). Estimation of environmental and genetic trends from records subject to culling.Biometrics, 15:192–218.MATHCrossRefGoogle Scholar
  67. Heyde, C. C. (1994). A quasi-likelihood approach to the REML estimating equations.Statistics & Probability Letters, 21:381–384.MathSciNetMATHCrossRefGoogle Scholar
  68. Heyde, C. C. (1997).Quasi-Likelihood and Its Application. Springer-Verlag, New York.MATHCrossRefGoogle Scholar
  69. Hill, J. R. (1990). A general framework for model-based statistics.Biometrika, 77:115–26.MathSciNetMATHCrossRefGoogle Scholar
  70. Hinde, J. (1982). Compound Poisson regression models. In R. Gilchrist, ed.,GLIM 82: Proceedings of the International Conference on Generalized Linear Models, pp. 109–121. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  71. Hinrichs, P. E. (2003).Consumer expenditure estimation incorporating generalized variance functions in hierarchical Bayes models. PhD Thesis, University of Nebraska-Lincoln.Google Scholar
  72. Ireland, C. T. andKullback, S. (1968). Contingency tables with given marginals.Biometrika, 55:179–188.MathSciNetMATHCrossRefGoogle Scholar
  73. Isaki, C. T. andFuller, W. A. (1982). Survey design under the regression superpopulation model.Journal of the American Statistical Association, 77:89–96.MathSciNetMATHCrossRefGoogle Scholar
  74. Jeske, D. R. andHarville, D. A. (1988). Predictions-interval procedures and (fixed-effects) confidence-interval procedures for mixed linear models.Communications in Statistics. Theory and Methods, 17:1053–1087.MathSciNetMATHCrossRefGoogle Scholar
  75. Jiang, J. (1996). REML estimation: Asymptotic behaviors and related topics.The Annals of Statistics, 24:255–286.MATHGoogle Scholar
  76. Jiang, J. (1997a). A derivation of BLUP—best linear unbiased predictor.Statistics & Probability Letters, 32:321–324.MathSciNetMATHCrossRefGoogle Scholar
  77. Jiang, J. (1997b). Wald consistency and the method of sieves in REML estimation.The Annals of Statistics, 25:1781–1803.MathSciNetMATHCrossRefGoogle Scholar
  78. Jiang, J. (1998a). Asymptotic properties of the empirical BLUP and BLUE in mixed linear models.Statistica Sinica, 8:861–885.MathSciNetMATHGoogle Scholar
  79. Jiang, J. (1998b). Consistent estimators in generalized linear mixed models.Journal of the American Statistical Association, 93:720–729.MathSciNetMATHCrossRefGoogle Scholar
  80. Jiang, J. (1999). Conditional inference about generalize linear mixed models.The Annals of Statistics, 27:1974–2007.MathSciNetMATHCrossRefGoogle Scholar
  81. Jiang, J. (2000a). A matrix inequality and its statistical applications.Linear Algebra and its Applications, 307:131–144.MathSciNetMATHCrossRefGoogle Scholar
  82. Jiang, J. (2000b). A nonlinear Gauss-Seidel algorithm for inference about GLMM.Computational Statistics, 15:229–241.MathSciNetMATHCrossRefGoogle Scholar
  83. Jiang, J. (2001). Goodness-of-fit tests for mixed model diagnostics.The Annals of Statistics, 29:1137–1164.MathSciNetMATHCrossRefGoogle Scholar
  84. Jiang, J. (2003). Empirical best prediction for small area inference based on generalized linear mixed models.Journal of Statistical Planning and Inference, 111:117–127.MathSciNetMATHCrossRefGoogle Scholar
  85. Jiang, J. (2006a). Comment on Song, Fan and Kalbfleisch: Maximization by parts in likelihood inference.Journal of the American Statistical Association. In press.Google Scholar
  86. Jiang, J. (2006b). Linear and generalized linear mixed models and their applications. Springer-Verlag, working monograph.Google Scholar
  87. Jiang, J. (2006c). Partially observed information and inference about non-Gaussian mixed linear models.The Annals of Statistics. In press.Google Scholar
  88. Jiang, J., Jia, H., andChen, H. (2001a). Maximum posterior estimation of random effects in generalized linear mixed models.Statistica Sinica, 11:97–120.MathSciNetMATHGoogle Scholar
  89. Jiang, J. andLahiri, P. (2001). Empirical best prediction for small area inference with binary data.Annals of the Institute of Statistical Mathematics, 53:217–243.MathSciNetMATHCrossRefGoogle Scholar
  90. Jiang, J. andLahiri, P. (2006). Estimation of finite population domain means-a model assisted empiricals best prediction approach. Journal of the American Statistical Association. In press.Google Scholar
  91. Jiang, J., Lahiri, P., andWan, S. (2002). A unified jackknife theory for empirical best prediction with M-estimation.The Annals of Statistics, 30:1782–1810.MathSciNetMATHCrossRefGoogle Scholar
  92. Jiang, J., Lahiri, P., andWu, C. H. (2001b). A generalization of Pearson's χ2 goodness-of-fit test with estimated cell frequencies.Sankhyā Series A, 63:260–276.MathSciNetMATHGoogle Scholar
  93. Jiang, J. andRao, J. S. (2003). Consistent procedures for mixed linear model selection.Sankhyā. Series A, 65:23–42.MathSciNetMATHGoogle Scholar
  94. Jiang, J. andZhang, W. (2001). Robust estimation in generalized linear mixed models.Biometrika, 88:753–765.MathSciNetMATHCrossRefGoogle Scholar
  95. Jiang, J. andZhang, W. (2002). Distribution-free prediction intervals in mixed linear models.Statistica Sinica, 12:537–553.MathSciNetMATHGoogle Scholar
  96. Juan-Albacea, Z. V. (2004). Small area estimation of sub-national poverty incidence. InProceeding of the ADB-GTZ-CEPA Regional Conference on Poverty Monitoring. Manila, Philippines.Google Scholar
  97. Kackar, R. N. andHarville, D. A. (1981). Unbiasedness of two-stage estimation and prediction procedures for mixed linear models.Communications in Statistics. Theory and Methods 10:1249–1261.MathSciNetMATHCrossRefGoogle Scholar
  98. Kackar, R. N. andHarville, D. A. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models.Journal of the American Statistical Association, 79:853–862.MathSciNetMATHGoogle Scholar
  99. Khuri, A. I. andSahai, H. (1985). Variance components analysis: a selective literature survey.International Statistical Review, 53:279–300.MathSciNetMATHCrossRefGoogle Scholar
  100. Kleffe, J. andRao, J. N. K. (1992). Estimation of mean square error of empirical best linear unbiased predictors under a random error variance linear model.Journal of Multivariate Analysis 43:1–15.MathSciNetMATHCrossRefGoogle Scholar
  101. Kott, P. (1989). Robust small domain estimation using random effects modelling.Survey Methodology 15:3–12.Google Scholar
  102. Kuk, A. Y. C. (1995). Asymptotically unbiased estimation in generalized linear models with random effects.Journal of the Royal Statistical Society. Series B, 57:395–407.MathSciNetMATHGoogle Scholar
  103. Lahiri, P. (1995). A jaccknife measure of uncertainty of linear empirical Bayes estimators. Unpublished manuscript.Google Scholar
  104. Lahiri, P. (2001).Model Selection, Vol. 38, ofIMS Lecture Notes-Monograph Series. Institute of Mathematical Statistics, Beachwood, Ohio.MATHGoogle Scholar
  105. Lahiri, P. (2003a). On the impact of bootstrap in sarvey sampling and small area estimation.Statistical Science, 18:199–210.MathSciNetMATHCrossRefGoogle Scholar
  106. Lahiri, P. (2003b). A review of empirical best linear unbiased prediction for the Fay-Herriot small-area model.The Philippine Statistician, 52:1–15.Google Scholar
  107. Lahiri, P. andLi, H. (2005). A fresh look at baseball data analysis. Unpublished report.Google Scholar
  108. Lahiri, P. andMaiti, T. (2002). Empirical Bayes estimation of relative risks in disease mapping.Calcutta Statistical Associations Bulletin, 53:211–212.MathSciNetMATHGoogle Scholar
  109. Lahiri, P. andMeza, J. L. (2002). Small-area estimation. In A. H. El-Shaarawi and W. W. Piegorsch, eds.,Encyclopedia of Environmentric, Vol. 4, pp. 2010–2014. John Wiley & Sons, Chichester.Google Scholar
  110. Lahiri, P. andRao, J. N. K. (1995). Robust estimation of mean squared error of small area estimators.Journal of the American Statistical Association, 90:758–766.MathSciNetMATHCrossRefGoogle Scholar
  111. Laird, N. M. andLouis, T. A. (1987). Empirical Bayes confidence intervals based on bootstrap samples.Journal of the American Statistical Association, 82:739–757.MathSciNetMATHCrossRefGoogle Scholar
  112. Lange, N. andRyan, L. (1989). Assessing normality in random effects models.The Annals of Statistics, 17:624–642.MathSciNetMATHCrossRefGoogle Scholar
  113. Lee, Y. andNelder, J. A. (1996). Hierarchical generalized linear models Iwith discussion).Journal of the Royal Statistical Society. Series B, 58:619–678.MathSciNetMATHGoogle Scholar
  114. Li, H. (2005). Comparison of different small area estimators for complex survey data. Unpublished manuscript.Google Scholar
  115. Liang, K. Y. andZeger, S. L. (1986). Longitudinal data analysis using generalized linear models.Biometrika, 73:13–22.MathSciNetMATHCrossRefGoogle Scholar
  116. Lin, X. andBreslow, N. E. (1996). Bias correction in generalized linear mixed models with multiple components of dispersion.Journal of the American Statistical Association, 91:1007–1016.MathSciNetMATHCrossRefGoogle Scholar
  117. Malec, D., Sedransk, J., Moriarity, C. L., andLeClere, F. B. (1997). Small area inference for binary variables in the National Health Interview Survey.Journal of the American Statistical Association, 92:815–826.MATHCrossRefGoogle Scholar
  118. Marker, D. A. (1999). Organization of small area estimators using generalized regression framework.Journal of Official Statistics, 15:1–24.Google Scholar
  119. Marshall, R. J. (1991). A review of methods for the statistical analysis of spatial patterns of disease.Journal of the Royal Statistical Society. Series A, 154:421–441.MathSciNetMATHCrossRefGoogle Scholar
  120. McCullagh, P. andNelder, J. A. (1989).Generalized Linear Models. Chapman and Hall, London, 2nd ed.MATHCrossRefGoogle Scholar
  121. McCulloch, C. E. (1994). Maximum likelihood variance components estimation for binary data.Journal of the American Statistical Association, 89:330–335.MATHCrossRefGoogle Scholar
  122. McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models.Journal of the American Statistical Association, 92:162–170.MathSciNetMATHCrossRefGoogle Scholar
  123. McGilchrist, C. A. (1994). Estimation in generalized mixed models.Journal of the Royal Statistical Society. Series B, 56:61–69.MathSciNetMATHGoogle Scholar
  124. Meza, J. L. (2003). Empirical Bayes estimation smoothing of relative risk in disease mapping.Journal of Statistical Planning and Inference, 112:43–62.MathSciNetMATHCrossRefGoogle Scholar
  125. Meza, J. L., Chen, S., andLahiri, P. (2003). Estimation of lifetime alcohol abuse for Nebraska counties. Unpublished manuscript.Google Scholar
  126. Meza, J. L. andLahiri, P. (2005). A note on the Cp statistic under the nested error regression model.Survey Methodology, 31:105–109.Google Scholar
  127. Miller, J. J. (1977). Asymptotic properties of maximum likelihood estimates in the mixed model of analysis of variance.The Annals of Statistics, 5:746–762.MathSciNetMATHCrossRefGoogle Scholar
  128. Morris, C. N. (1983a). Parametric empirical Bayes confidence intervals. InScientific Inference, Data Analysis and Robustness, Vol. 4, pp. 25–50. Academic Press, New York.CrossRefGoogle Scholar
  129. Morris, C. N. (1983b). Parametric empirical Bayes inference: theory and applications.Journal of the American Statistical Association, 78:47–59.MathSciNetMATHCrossRefGoogle Scholar
  130. Mukhopadhyay, P. (1998).Small Area Estimation in Survey Sampling. Narosa Publishing House, New Delhi.MATHGoogle Scholar
  131. Nandram, B. (1999). An empirical Bayes prediction interval for the finite population mean of a small area.Statistica Sinica, 9:325–343.MathSciNetMATHGoogle Scholar
  132. Nandram, B. andSedransk, J. (1993). Empirical Bayes estimation for the finite population mean on the current occasion.Journal of the American Statistical Association, 88:994–1000.MathSciNetMATHGoogle Scholar
  133. Natarajan, R. andMcCulloch, C. E. (1995). A note on the existence of the posterior distribution for a class of mixed models for binomial responses.Biometrika, 82:639–643.MathSciNetMATHCrossRefGoogle Scholar
  134. National Research Council (2000).Small-Area Estimates of School-Age Children in Poverty: Evaluation of Current Methodology. National Academic Press, Washington.Google Scholar
  135. Neyman, J. andScott, E. (1948). Consistent estimates based on partially consistent observations.Econometrika, 16:1–32.MathSciNetMATHCrossRefGoogle Scholar
  136. Patterson, H. D. andThompson, R. (1971). Recovery of interblock information when block sizes are unequal.Biometrika, 58:545–554.MathSciNetMATHCrossRefGoogle Scholar
  137. Pfeffermann, D. (1984). On extensions of the Gauss-Markov theorem to the case of stochastic regression coefficient.Journal of the Royal Statistical Society, Series B, 46:139–148.MathSciNetMATHGoogle Scholar
  138. Pfeffermann, D. (2002). Small area estimation-new developments and directions.International Statistical Review, 70:125–143.MATHGoogle Scholar
  139. Pfeffermann, D. andTiller, R. (2002). Bootstrap approximation to prediction MSE for state-space models with estimated parameters. Technical Report, U.S. Bureau of Labor Statistics.Google Scholar
  140. Pinheiro, J. C. andBates, D. M. (2000).Mixed-Effects Models in S and S-Plus. Springer-Verlag, New York, 2nd ed.MATHCrossRefGoogle Scholar
  141. Prasad, N. G. N. andRao, J. N. K. (1990). The estimation of mean squared errors of small area estimators.Journal of the American Statistical Association, 85:163–171.MathSciNetMATHCrossRefGoogle Scholar
  142. Prasad, N. G. N. andRao, J. N. K. (1999). On robust small area estimation using a simple random effects model.Survey Methodology, 25:67–72.Google Scholar
  143. Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observation.Biometrics, 44:1033–1048.MathSciNetMATHCrossRefGoogle Scholar
  144. Rao, C. R. (1972). Estimation of variance and covariance components in linear models.Journal of the American Statistical Association, 67:112–115.MathSciNetMATHCrossRefGoogle Scholar
  145. Rao, J. N. K. (1986). Synthetic estimators, SPREE and the best model based predictors. InProceedings of the Conference on Survey Methods in Agriculture, pp. 1–16. U. S. Dept. of Agricultur, Washington, D.C.Google Scholar
  146. Rao, J. N. K. (1999). Some recent advances in model-based small area estimation.Survey Methodology, 25:175–186.Google Scholar
  147. Rao, J. N. K. (2001). EB and EBLUP in small area estimation. In: S. E. Ahmed and N. Reid, eds.,Empirical Bayes and Likelihoodinference, Vol. 148 ofLecture Notes in Statistics, pp. 33–43. Springer-Verlag, New York.Google Scholar
  148. Rao, J. N. K. (2003).Small Area Estimation. John Wiley & Sons, New York.MATHCrossRefGoogle Scholar
  149. Richardson, A. M. andWelsh, A. H. (1994). Asymptotic properties of restricted maximum likelihood (REML) estimates for hierarchical mixed linear models.Australian Journal of Statistics, 36:31–43.MathSciNetMATHCrossRefGoogle Scholar
  150. Rivest, L. P. andBelmonte, E. (1999). The conditional mean square errors of small area estimators in survey sampling. Technical Report, Laval University.Google Scholar
  151. Robinson, D. L. (1987). Estimation and use of variance components.Journal of the Royal Statistical Society. Series D. The Statistician, 36:3–14.Google Scholar
  152. Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects (with discussion).Statistical Science, 6:15–51.MathSciNetMATHCrossRefGoogle Scholar
  153. Schall, R. (1991). Estimation in generalized linear models with random effects.Biometrika, 78:719–727.MATHCrossRefGoogle Scholar
  154. Searle, S. R., Casella, G., andMcCulloch, C. E. (1992).Variance Components. John Wiley & Sons, New York.MATHCrossRefGoogle Scholar
  155. Shaw, R. G. (1987). Maximum-likelihood approaches applied to quantitative genetics of natural populations.Evolution, 41:812–826.CrossRefGoogle Scholar
  156. Singh, A. C., Stukel, D. M., andPfeffermann, D. (1998). Bayesian versus frequentist measures of error in small area estimation.Journal of the Royal Statistical Society. Series B, 60:377–396.MathSciNetMATHCrossRefGoogle Scholar
  157. Song, P. X.-K., Fan, Y., andKalbfleisch, J. D. (2005). Maximization by parts in likelihood inference (with discussion).Journal of the American Statistical Association, 100(472):1145–1158.MathSciNetMATHCrossRefGoogle Scholar
  158. Speed, T. P. (1997). Restricted maximum likelihood (REML). In S. Kotz, C. B. Read, and D. L. Banks, eds.,Encyclopedia of Statistical Sciences, Vol. 1, pp. 472–481. John Wiley & Sons, New York.Google Scholar
  159. Särndal, C. E. (1984). Design-consistent versus model-dependent estimators for small domainss.Journal of the American Statistical Association, 79:624–6315.MATHGoogle Scholar
  160. Tabunda, A. M. L. andAbanilla, J. R. Y. (1997). A look at EBLUP and other small area estimates of poverty incidence at the city/municipality level. InProceedings of 10th SRTC Annual Conference, pp. 73–97. Statistical Research and Training Center, Quezon City, Philippines.Google Scholar
  161. Thompson, J., W. A.(1962). The problem of negative estimates of variance components.Annals of Mathematical Statistics, 33:273–289.MathSciNetMATHCrossRefGoogle Scholar
  162. Verbyla, A. P. (1990). A conditional derivation of residual maximum likelihood.Australian Journal of Statistics, 32:227–230.CrossRefGoogle Scholar
  163. Wolfinger, R. andO'Connell, M. (1993). Generalized linear mixed models: a pseudo-likelihood approach.Journal of Statistical Computation and Simulation, 48:233-vi243.MATHCrossRefGoogle Scholar
  164. Wolter, K. M. (1985).Introduction to Variance Estimation. Springer-Verlag, New York.MATHGoogle Scholar
  165. You, Y. andRao, J. N. K. (2002). A pseudo-empirical best linear unbiased prediction approach to small area estimation using survey weights.Canadian Journal of Statistics, 30(3):431–439.MathSciNetMATHCrossRefGoogle Scholar
  166. Zeger, S. L. andKarim, R. M. (1991). Generalized linear models with random effects: a Gibbs sampling approach.Journal of the American Statistical Association, 86:79–86.MathSciNetCrossRefGoogle Scholar

Additional references

  1. Beran, R. andHall, P. (1992). Estimating coefficient distributions in random coefficient regressions.The Annals of Statistics, 20:1970–1984.MathSciNetMATHCrossRefGoogle Scholar
  2. El-Amroui, A. andGoffinet, B. (1991). Estimation of the density ofg given observations ofy=g+e.Biometrical Journal, 33:347–355.MathSciNetMATHCrossRefGoogle Scholar
  3. Hall, P. andMaiti, T. (2006a). Nonparametric estimation of mean-squared prediction error in nested-error regression models.The Annals of Statistics. To appear.Google Scholar
  4. Hall, P. andMaiti, T. (2006b). On parametric bootstrap methods for small-area prediction.Journal of the Royal Statistical Society. Series B. To appear.Google Scholar
  5. Li, T. andVuong, Q. (1998). Nonparametric estimation of the measurement error model using multiple indicators.Journal of Multivariate Analysis, 65:139–165.MathSciNetMATHCrossRefGoogle Scholar

Additional references

  1. Chambers, R. L. (2005). Calibrated weighting for small area estimation. Methodology Working Paper Series M05/04, Southampton Statistical Sciences Research Institute, University of Southampton, United Kingdom.Google Scholar
  2. González-Manteiga, W., Lombardía, M. J., Morales, D., andSantamaría, L. (2005). Estimation of the mean squared error of predictors of small area linear parameters under logistic mixed model. Submitted.Google Scholar

Additional references

  1. Pfeffermann, D. andBarnard, C. H. (1991). Some new estimators for small area means with application to the assessment of farmland values.Journal of Business & Economic Statistics, 9:73–84.Google Scholar
  2. Pfeffermann, D. andGlickman, H. (2004). Mean square error approximation in small area estimation by use of parametric and nonparametric bootstrap. InProceedings of the Survey Research Methods Section. American Statistical Association.Google Scholar
  3. Pfeffermann, D. andSverchkov, M. (2005). Small area estimation under informative probability sampling of areas and within the selected areas. Working Paper Series M05/18, Southampton Statistical Sciences Research Institute, University of Southampton, U.K.MATHGoogle Scholar
  4. Pfeffermann, D. andTiller, R. (2005a). Bootstrap approximation to prediction MSE for state-space models with estimated parameters.Journal of Time Series Analysis, 26:893–916.MathSciNetMATHCrossRefGoogle Scholar
  5. Pfeffermann, D. andTiller, R. (2005b). Small area estimation with state-space models subject to benchmark constraints. Working Paper Series M05/14, Southampton Statistical Sciences Research Institute, University of Southampton, U.K.MATHGoogle Scholar
  6. Sallas, W. H. andHarville, D. A. (1981). Best linear recursive estimation for mixed linear models.Journal of the American Statistical Association, 76:860–869.MathSciNetMATHCrossRefGoogle Scholar

Additional references

  1. Morris, C. N. (1983). Natural exponential families with quadratic variance functions: Statistical theory.The Annals of Statistics, 11(2):515–529.MathSciNetMATHCrossRefGoogle Scholar
  2. Morris, C. N. (1988). Approximating posterior distributions and posterior moments. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, eds.,Bayesian Statistics, Vol. 3, pp. 327–344. Oxford University Press, Oxford.Google Scholar
  3. Tang, R. (2002).Fitting and Evaluating Certain Two-Level Hierarchical Models. PhD Thesis, Dept. of Statistics, Harvard University.Google Scholar

Additional references

  1. Lohr, S. andRao, J. N. K. (2003). Resampling methods for MSE estimation with nonlinear small area models. InProceedings of Statistics Canada Symposium 2003.Google Scholar
  2. Torabi, M. andRao, J. N. K. (2005). Mean squared error estimators of small area means using survey weights. InProceedings of the Statistical Society of Canada Annual Meeting, Survey Methods Section.Google Scholar

Additional references

  1. Aldridge, D. K. (2002). Special supplemental nutrition program for Women, Infants, and Children (WIC) funding formula evolution.Journal of Official Statistics, 18(3):429–439.Google Scholar
  2. Benjamini, Y. andHochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing.Journal of the Royal Statistical Society. Series B, 57:289–300.MathSciNetMATHGoogle Scholar
  3. Black, M. A.(2004). A note on the adaptive control of false discovery rates.Journal of the Royal Statistical Society. Series B, 66:297–304.MathSciNetMATHCrossRefGoogle Scholar
  4. Brackstone, G. (1999). Managing data quality in a statistical agency.Survey Methodology, 25:139–149.Google Scholar
  5. Brenneman, W. A. andNair, V. N. (2001). Methods for identifying dispersion effects in unreplicated factorial experiments: A critical analysis and proposed strategies.Technometrics, 43:388–405.MathSciNetCrossRefGoogle Scholar
  6. Daniel, C. (1959). Use of half-normal plots in interpreting factorial two-level experiments.Technometrics, 1:311–341.MathSciNetCrossRefGoogle Scholar
  7. Kahneman, D. andTversky, A. (1979). Prospect theory: An analysis of decision under risk.Econometrica, 47:263–291.MATHCrossRefGoogle Scholar
  8. Kahneman, D. andTversky, A. (1984). Choices,values and frames.American Psychologist, 39:341–350.CrossRefGoogle Scholar
  9. McGrath, R. N. andLin, D. K. J. (2001). Testing multiple dispersion effects in unreplicated fractional factorial designs.Technometrics, 43:406–414.MathSciNetCrossRefGoogle Scholar
  10. Shen, W. andLouis, T. A. (1998). Triple-goal estimates in two-stage hierarchical models.Journal of the Royal Statistical Society. Series B, 60:455–471.MathSciNetMATHCrossRefGoogle Scholar
  11. Shen, W. andLouis, T. A. (2000). Triple-goal estimates for disease mapping.Statistics in Medicine, 17:2295–2308.CrossRefGoogle Scholar
  12. Storey, J. D. (2002). A direct approach to false discovery rates.Journal of the Royal Statistical Society. Series B, 64:479–498.MathSciNetMATHCrossRefGoogle Scholar
  13. Tversky, A. andKahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty.Journal of Risk and Uncertainty, 5:297–323.MATHCrossRefGoogle Scholar
  14. Zaslavsky, A. M. andSchirm, A. L. (2002). Interactions between survey estimates and federal funding formulas.Journal of Official Statistics, 18:371–391.Google Scholar
  15. Zhang, L. C. andChambers, R. L. (2004). Small area estimates for cross-classifications.Journal of the Royal Statistical Society. Series B, 66:479–496.MathSciNetMATHCrossRefGoogle Scholar

Additional references

  1. Bernardo, J. M. (2005). Reference analysis. In D. K. Dey and C. R. Rao, eds.,Bayesian Thinking, Modeling and Computation Vol. 25 ofHandbook of Statistics, pp. 17–90. North Holland, Amsterdam.CrossRefGoogle Scholar
  2. Chatterjee, S., Lahiri, P., andLi, H. (2006). Prediction interval estimation for small areas. Unpublished manuscript.Google Scholar
  3. Chen, S. (2001).Empirical Best Prediction and Hierarchical Bayes Methods in Small-Area Estimation. PhD Thesis, Univ. of Nebraska-Lincoln.Google Scholar
  4. Datta, G. S., Lahiri, P., andMaiti, T. (2002). Empirical Bayes estimation of median income of four person families by state using time series and cross-sectional data.Journal of Statistical Planning and Inference, 102:83–97.MathSciNetMATHCrossRefGoogle Scholar
  5. Datta, G. S., Lahiri, P., Maiti, T., andLu, K. L. (1999). Hierarchical Bayes estimation of unemployment rates for the states of the U.S.Journal of the American Statistical Association, 94:1074–1082.CrossRefGoogle Scholar
  6. Datta, G. S. andMukherjee, R. (2004).Probability Matching Priors: Higher Order Asymptotics, Vol. 178 ofLecture Notes in Statistics. Springer-Verlag, New York.CrossRefGoogle Scholar
  7. Datta, G. S. andSweeting, T. J. (2005). Probability matching priors. In D. K. Dey and C. R. Rao, eds.,Bayesian Thinking, Modeling and Computation, Vol. 25 ofHandbook of Statistics, pp. 91–114. North Holland, Amsterdam.CrossRefGoogle Scholar
  8. Ganesh, N. andLahiri, P. (2005). Multiple comparisons for small areas. Unpublished manuscript.Google Scholar
  9. Ganesh, N., Lahiri, P., andRao, J. N. K. (2005). Mean squared error estimation under nonnormal nested error models. Unpublished manuscript.Google Scholar
  10. Ghosh, M. andSinha, B. K. (1990). On the consistency between model-based and design-based estimators in survey sampling.Communications in Statistics. Theory and Methods, 19(2):689–702.MathSciNetMATHCrossRefGoogle Scholar
  11. Jiang, J. (2003). Empirical method of moments and its applications.Journal of Statistical Planning and Inference, 115:69–84.MathSciNetMATHCrossRefGoogle Scholar
  12. Lahiri, P. andLi, T. (2006). Estimation of the change in total employment using the U.S. current employment statistics survey. Unpublished manuscript.Google Scholar
  13. Little, R. J. A. (2004). To model or not to model? Competing modes of inference for finite population sampling.Journal of the American Statistical Association, 99:546–556.MathSciNetMATHCrossRefGoogle Scholar
  14. Malec, D. andSedransk, J. (1992). Bayesian methodology for combining the results from different experiments when the specifications for pooling are uncertain.Biometrika, 79:593–601.MATHCrossRefGoogle Scholar
  15. Nandram, B. (2000). Bayesian generalized linear models for inference about small areas. In D. K. Dey, S. K. Ghosh, and B. K. Mallick, eds.,Generalized linear models: A Bayesian Perspective, Chap. 6, pp. 91–114. Marcel Dekker, New York.Google Scholar
  16. National Research Council, Report 1 (1997).Small Area Estimates of Children in Poverty: Interim Report 1, Evaluation of 1993 Estimates for Title I Allocations. National Academic Press, Washington.Google Scholar
  17. National Research Council, Report 3 (1999).Small Area Estimates of Children in Poverty: Interim Report 3, Evaluation of 1995 County and School District Estimates for Title I Allocations. National Academic Press, Washington.Google Scholar
  18. Opsomer, J. D., Breidt, F. J., Claeskens, G., Kauermann, G., andRanalli, G. (2004). Nonparametric small area estimation using penalized spline regression. InProceedings of the Survey Research Methods Section. American Statistical Association. To appear.Google Scholar
  19. Rao, J. N. K. andYu, M. (1994). Small area estimation by combining time series and cross-sectional data.Canadian Journal of Statistics, 22:511–528.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Sociedad Española de Estadistica e Investigacion Operativa 2006

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of CaliforniaDavisUSA
  2. 2.Joint Program in Survey MethodologyUniversity of MarylandUSA

Personalised recommendations