Advertisement

A non-volumetric method of measuring the ratio of solid and voids in porous material with a computer aided system

  • Passas N. 
  • Butenuth C. 
  • Freitas M. H. de 
Article

Abstract

A computer-aided method used to determine the porosity of Penrith sandstone is presented. Penrith sandstone is a coarse well sorted orthoquarzite with a high degree of mineralogical and textural maturity (Waugh, 1970). A computer-aided system has been developed which analyses photographic images of petrological thin sections. The visible voids are identified on the photos, traced onto paper, and scanned into IDRISI 4.1, a Geographic Information System. The images reproduced by the computer are of two colours, black and white, black representing the solids and white the voids, and the area occupied by each measured using IDRISI. Porosity was considered to be the ratio, or the percentage, of the area which represented the voids to the area of the whole image. The results obtained are compared with results from standard methods of measuring the true porosity of rock.

Keywords

Porosity Sandstone Porous Medium Thin Section Area Ratio 

Méthode de mesure non volumétrique du rapport solide/vides dans un matériau poreux à l'aide d'un logiciel d'analyse d'images

Résumé

L'article présente und méthode basée sur l'analyse d'images pour étudier la porosité d'un grès. Le grès de Penrith est un orthoquartzite grossier bien gradué, présentant un haut degré d'évolution minéralogique et texturale (Waugh, 1970). Un logiciel d'analyse d'images qui analyse les photographies de lames minces a été développé. Les vides visibles sont identifiés sur photos, reportés sur papier et scannerisés par le biais d'un Système d'Information Géographique (IDRISI 4.1). Les images reproduites par l'ordinateur sont en noir et blanc, le noir représentant la phase solide et le blanc les vides, et les surfaces respectives sont mesurées à l'aide d'IDRISI. La porosité a été considérée comme étant le rapport, ou le pourcentage de la surface représentant les vides à la surface totale de l'image. Les résultats sont comparés à ceux obtenus à partir des méthodes classiques de mesure de la porosité des roches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALDER P.M., JACQUIN C.G., Thovert, J.-F., 1992: The Formation Factor of Recontructed Porous Media. Wat. Resources Res., Vol. 28, No 6, pp. 1571–1576.CrossRefGoogle Scholar
  2. AL-SAMAHIJI D.K., 1992: Experimental Investigation of Rock failure in extension. Ph.D. Thesis, Imperial College, London.Google Scholar
  3. ATKINSON B.K., 1984: Subcritical Crack Growth in Geological Materials. J. Geophys. Res., Vol. 89, pp. 4077–4114.CrossRefGoogle Scholar
  4. BOLTZE U., 1994: Gas Emissions relevant to waste management, through watertables in porous media. Ph.D. Thesis. Imperial College, London.Google Scholar
  5. BRITISH STANDARDS INSTITUTION, 1988: Determination of Bulk Density, True Porosity and Apparent Porosity of Dense Shaped Products (method 1902-308). BS1902: Section 3.8: 1988.Google Scholar
  6. BRITISH STANDARDS INSTITUTION, 1989: Determination of the Bulk Density and True Porosity of Shape Insulating Products. BS1902: Section 3.7: 1989.Google Scholar
  7. BROWN E.T., 1981: Rock Characterization Testing and Monitoring. ISRM Suggested Methods. Pergamon Press. Great Britain.Google Scholar
  8. BROWN M., 1994: Microstructural Analysis in 3D. Mater. Wld., Vol. 2, No 4, pp. 200.Google Scholar
  9. BYRKIT D.R., 1980: Elements of Statistics. 3rd Edition, Litton Educational Publishing, U.S.A.Google Scholar
  10. CHAN S.L., 1989: Image Analysis. In Fractography and Failure Mechanisms of Polymers and Composites, pp. 145–192.Google Scholar
  11. DOWDY S., WEARDEN S., 1983: Statistics for Research. John Wiley & Sons, Canada.Google Scholar
  12. DUNN D.E., LAFOUNTAIN L.J., 1976: Porosity-Dependent Strength Reduction by Cycling Loading. Proc. 17th U.S. Symp. Rock Mechanics, 2A3: 1–5.Google Scholar
  13. FREDRICH J.T., GREAVES K.H., MARTIN J.W., 1993: Pore Geometry and Transport Properties of Fontainebleau Sandstone. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 30, No 7, pp. 691–697.CrossRefGoogle Scholar
  14. FRIEDMAN M., 1976: Porosity, Permeability, and Rock Mechanics—A Review. Proc. 17th U.S. Symp. Rock Mechanics, pp. 2A1: 1–17.Google Scholar
  15. GANGI A.F., 1976: Hertz Theory Applied to the Porosity—Pressure, Permeability Pressure and Failure Strength—Porosity Variations of Porous Rocks. Proc. 17th U.S. Symp. Rock Mechanics, pp. 2A5: 1–7.Google Scholar
  16. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 1986: Shaped Insulating Refractory Products—Determination of Bulk Density and True Porosity. ISO 5016: 1986.Google Scholar
  17. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 1988: Dense Shaped Refractory Products—Determination of Bulk Density, Apparent Porosity and True Porosity. ISO 5017: 1988.Google Scholar
  18. LADANYI B., 1966: Rock Failure under Concentrated Loading. Proc. 10th Symp. Rock Mechanics, pp. 363–387.Google Scholar
  19. MANEVAL J.E., 1991: Studies of Moisture Transport in unconsolidated Porous Media: Use of NMR as an Experimental Probe. Ph.D. Thesis. University of California, Davis, U.S.A.Google Scholar
  20. MINITAB, 1991: Minitab Reference Manual, Release 8, PC Version. Minitab Statistical Software Inc. U.S.A.Google Scholar
  21. MORGENSTERN N.R., PHUKAN A.L.T., 1966: Non-linear Deformation of a Sandstone. Proc. 1st Congr. Int. Soc. Rock Mechanics, Vol. I, pp. 543–548.Google Scholar
  22. MUSKAT M., 1937: The Flow of Homogeneous Fluids through Porous Media. 1st Edition. McGraw-Hill Book Co., Inc. London.Google Scholar
  23. NORME FRANÇAISE, 1988: Shaped Insulated Refractory Products—Determination of bulk density and True Porosity. NF ISO 5016: 1988 or NF B40-341.Google Scholar
  24. NORME FRANÇAISE, 1988: Dense Shaped Refractory Products—Determination of Bulk Density, Apparent Porosity and True Porosity. NF ISO 5017: 1988.Google Scholar
  25. QUINTTARD M., WHITAKER S., 1994: Transport in Ordered and Disordered Porous Media V: Geometrical Results for Two-Dimensional Systems. Transp. Porous Media, Vol. 15, pp. 183–196.CrossRefGoogle Scholar
  26. SCANGAL, 1988: Scanning Gallery Plus, Version A.03.00, Hewlett-Packard Co. and Microsoft Corporation.Google Scholar
  27. SIRIEYS P.M., 1966: Porosity, Degree of Saturation and Laws of Behaviour of the Rocks. Proc. 1st Congr. Int. Soc. Rock Mechanics, Vol. I, pp. 471–475.Google Scholar
  28. SPEARING M., MATTHEWS G.P., 1991: Modelling Characteristic Properties of Sandstones. Transp. Porous Media, Vol. 6, pp. 71–90.CrossRefGoogle Scholar
  29. UNDERWOOD E.E., 1970: Quantitative Stereology. Addison-Wesley Publishing Co., U.S.A.Google Scholar
  30. VAN BRAKEL J., 1975: Pore Space Models for Transport Phenomena in Porous Media. Review and Evaluation with Special Emphasis on Capillary Transport. Powder Technology, Vol. 11, pp. 205–236.CrossRefGoogle Scholar
  31. VERNIK L., BRUNO M., BORBERG C., 1993: Empirical Relations between Compressive Strength and Porosity of Silicate Rocks. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 30, No 7, pp. 677–680.CrossRefGoogle Scholar
  32. WAUGH B., 1970: Petrology, Provenance and Silica Diagenesis of the Penrith Sandstone (Lower Permian) of NW England. Journal of Sedimentary Petrology, vol. 40, no 4, pp. 1226–1240. U.S.A.Google Scholar
  33. WALSH J.B., 1965a: The Effect of Cracks on the Compressibility of Rock. J. Geophys. Res., Vol. 70, No 2, pp. 381–389.CrossRefGoogle Scholar
  34. WALSH J.B., 1965b: The Effect of Cracks on the Uniaxial Elastic Compression of Rocks. J. Geophys. Res., Vol. 70, No 2, pp. 399–411.CrossRefGoogle Scholar
  35. WALSH J.B., BRACE W.F., 1966: Crack and Pores in Rocks. Proc. 1st Congr. Int. Soc. Rock Mechanics, Vol. I, pp. 643–646.Google Scholar
  36. YIN H., NUR A., MAVKO G., 1993: Critical Porosity—A Physical Boundary in Poroelasticity. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 30, No 7, pp. 805–808.CrossRefGoogle Scholar

Copyright information

© International Association of Engineering Geology 1996

Authors and Affiliations

  • Passas N. 
    • 1
  • Butenuth C. 
    • 1
  • Freitas M. H. de 
    • 1
  1. 1.Imperial College of Science, Technology and Medicine, Dept. of GeologyEngineering Geology GroupLondonUK

Personalised recommendations