Limits of the geological predictions constructing the samanalawewa pressure tunnel, Sri Lanka

  • Karl-Heinz Nagel


The Samanalawewa Hydroelectric Power Plant in Sri Lanka consists out of a 110 m high dam, 5.5 km near surface pressure tunnel and a powerhouse equipped with two Francis turbines of 62 MW each.

To explore the geological conditions for the pressure tunnel about 6500 m were drilled with a total of 97 boreholes. Additionally surface investigations and a geophysical program were realized in order to optimize the drilling campaign.

Notwithstanding this very extensive field investigations important modifications in the design of the tunnel had to be made during construction. Consequently, the contractor claimed additional not foreseeable construction works.

At least the question of the possible precision of geological prediction within reasonable economical limits had to be answered.


Excavation Tunnel Face Rock Mass Rating Seepage Flow Biotite Gneiss 

Limites des prévisions géologiques dans la construction d'un tunnel sous pression au barrage de samanalawewa, Sri Lanka


Au Sri Lanka, la centrale hydroélectrique de Samanalawewa est constituée par un barrage de 110 m de haut, un tunnel sous pression, près de la surface du sol, d'une longueur de 5,5 km et une usine équipée, de deux turbines Francis, ayant chacune une puissance de 62 MW.

Afin d'examiner les conditions géologiques du tunnel sous pression, l'on fait sur 6 500 m un total de 97 forages. Par ailleurs, des recherches à la surface et un programme géophysique ont été réalisés afin d'obtenir une campagne de forages optimum.

Cependant, malgré ces recherches très poussées, d'importantes modifications du tracé du tunnel ont dû être faites lors de la construction. Aussi donc, l'entrepreneur exigera des travaux supplémentaires non prévus.

Enfin, la question concernant la prédiction géologique la plus précise possible dans des limites économiques acceptables a été élucidée.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BIENIAWSKI, Z.T.:Geomechanics classification of rock masses and its application in tunnelling. In: Proc. 3rd Int. Congr. ISRM, Denver, 1974, Vol. IIA, p. 27–32.Google Scholar
  2. BIENIAWSKI, Z.T.:The Geomechanics Classification in Rock Engineering Applications, In: Proc. 4th ISRM Int. Congr. on Rock Mechanics, Sept. 1979, Montreaux, Bd. 2, p. 41–48.Google Scholar
  3. BRÄUTIGAM, F., HESSE, K.-H.:Ingenieurgeologische Erfahrungen beim Vortrieb von Tunnelbauten im Buntsandstein Osthessens für die DB-Neubaustrede Hannover-Würzburg. In: Ber. 6. Nat. Tagung Ing. Geol., Aachen, 1987, p. 259–281.Google Scholar
  4. EINSTEIN, H.H. et al.:Comparision of five Empirical Tunnel Classification Methods—Accuracy, Effect, of Subjectivity and Available Information. In: Proc. 5th ISRM Int. Congr. on Rock Mech., Montreux 1979 Bd. 1, p. C 303–C 313.Google Scholar
  5. HOEK, E., BROWN, E.T.:Underground Excavations in Rock.The Institution of Mining and Metallurgy. London, 1982.Google Scholar
  6. KAISER, P.K.; MacKAY, C.; GALE, A.D.: Evaluation of Rock Classifications at B.C. Rail Tumbler Ridge Tunnels. In:Rock Mech. and Rock Eng. 19 (1986), p. 205–234.CrossRefGoogle Scholar
  7. NAGEL, K.-H.; THOMAS, A.:Tunnel Alignment for the Cortaderol Scheme, Chile. In: Bulletin of the International Association of Engineering Geology, No 39, Paris 1989, p. 111–120.Google Scholar
  8. STINI, I.:Tunnelbaugeologie, Springer—Verlag, Vienna, 1950. 366 pages.CrossRefGoogle Scholar

Copyright information

© International Association of Engineering Geology 1992

Authors and Affiliations

  • Karl-Heinz Nagel
    • 1
  1. 1.Electrowatt Engineering Services Ltd.ZurichSwitzerland

Personalised recommendations