Advertisement

The use of fractal dimension in engineering geology

  • F. J. Brosch
  • P. Pölsler
  • G. Riedmüller
Article

Abstract

The method of fractal geometry allows the simulation as well as description of data of many different natural states of orientation, distribution and consistency. This affords to the engineering geologist various new possibilities of identifying rock mass and rock. We have tried to use fractal dimension (FD) for characterising roughness profiles of shear faces as well as fracture trace maps of foundation surfaces. Fractal dimension proved to be a characteristic which—difficult to determine by other methods—is a valuable aid in describing and identifying rock masses in terms of geology and geotechnics. The collection of data as well as the representation and adequate, interpretation of the results, however, call for a further improvement of methods and additional experience.

Keywords

Rock Mass Fractal Dimension Fractal Geometry Fault Gouge Trace Length 

L'utilisation de la “dimension fractale” en géologie de l'ingénieur

Résumé

Le concept de «géométrie fractale» permet de simuler et de décrire les données de divers états d'orientation, de distribution et de consistance. Ceci offre à l'ingénieur géologique quelques nouveaux moyens de caractériser les massifs rocheux et les roches. Et nous servant de la «dimension fractale» (FD), nous avons essayé de caractériser des profils de rugosité pour des faces de cisaillement ainsi que des cartes de traces de fractures pour des surfaces de fondation. On a constaté que la «dimension fractale», difficile à déterminer par d'autres méthodes, représente une caractéristique qui aide à décrire et identifier les massifs rocheux des points de vue géologique et géotechnique. La collection des données ainsi que la représentation et interprétation adéquate des résultats ont pourtant besoin de méthodes encore améliorées et d'expérience supplémentaire.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BARTON N.R., 1973: Review of a new shear strength criterion for rock joint.—Engin. Geol. 7; 287–332.CrossRefGoogle Scholar
  2. BARTON C.C., LARSEN E., 1986: Fractal geometry of two dimensional fracture networks at Yucca Mountain, southern Nevada.— Proc. Int. Symp. Fundamentals of Rock Joints/Björkliden 1985; 77–84.Google Scholar
  3. BROSCH F.J., RIEDMÜLLER G, 1987: Zur Baugeologie der Gründung des Murkraftwerkes Rabenstein.—Felsbau 5/4; 188–194.Google Scholar
  4. BROSCH F.J., RIEDMÜLLER G., NOHER H.P., 1990: Großscherversuche beim Bau des Murkraftwerkes Rabenstein.—Felsbau 8/1; 38–46.Google Scholar
  5. CARR J.R, 1989: Stochastic versus determininstic fractals: the controversy over applications in the earth sciences.—Engineering Geology and Geotechnical Engineering (R.J. Watters, ed.); 297–308; Balkema Rotterdam).Google Scholar
  6. CHELIDZE T., GUEGUEN Y., 1990: Evidence of fractal fracture. —Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr. 22/3; 223–225.CrossRefGoogle Scholar
  7. CULLING W.E.H., 1989: The characterisation of regular/irregular surfaces in the soil-covered landscape by Gaussian random fields. —Computers & Geosciences 15/2; 219–226.CrossRefGoogle Scholar
  8. HAYWARD J., ORFORD J.D., WHALLEY W.B., 1989: Three implementations of fractal analysis of particle outlines.—Computers & Geosciences 15/2; 199–208.CrossRefGoogle Scholar
  9. HIRATA T., SATOH T., ITO K., 1987: Fractal structure of spatial distribution of microfracturing in rock.—Geophys. J. Roy. Astr. Soc. 90; 369–374.CrossRefGoogle Scholar
  10. HIRATA T., 1989: Fractal dimensions of fault systems in Japan: fractal structure in rock fracture at various scales—PAGEOPH. 131/1/2; 157–170.CrossRefGoogle Scholar
  11. KORVIN G., 1989: Fractured but not fractal: fragmentation of the Gulf of Suez basement.—PAGEOPH, 131/1/2; 289–305.CrossRefGoogle Scholar
  12. LEE Y.H., CARR J.R., BARR D.J., HAAS C.J., 1990: The fractal dimension as a measure of the roughness of rock discontinuity profiles.—Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 27/6: 453–464.CrossRefGoogle Scholar
  13. MANDELBROT B.B., 1967: How long is the coast of Britain?— Statistical self similarity and fractal dimension.—Science 156: 636–638.CrossRefGoogle Scholar
  14. MANDELBROT B.B., 1977: Fractals: form, chance and dimension. —Freeman (San Francisco), 365 p.Google Scholar
  15. MANDELBROT B.B., 1983: The fractal geometry of nature.—Freeman (New York), 460 p.Google Scholar
  16. NOHER H.P., RIEDMÜLLER G. 1988: Geotechnische Aspekte im Bereich der Baugrube-Feldversuche zur Charakterisierung der Festgesteine.—ÖZE 41/12; 438–444.Google Scholar
  17. POULTON M.M., MOJTABAI N., FARMER I.W., 1990: Scale invariant behaviour of massive and fragmented rock.—Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 27/3; 219–221.CrossRefGoogle Scholar
  18. RICHARDSON L.F., 1961: The problem of contiguity: an appendix of statistics of deadly quarrels.—General Systems Yearbook 6: 139–188.Google Scholar
  19. SAMMIS C.G., BIEGEL R.L., 1989: Fracalss, fault gouge, and friction. —PAGEOPH, 131/1/2; 255–272.CrossRefGoogle Scholar
  20. SCHOLZ C.H., 1990: The mechanics, of earthquakes and faulting —Cambridge University Press (Cambridge etc.); 439 p.Google Scholar
  21. TURK N., GREIG M.J., DEARMAN W.R., AMIN F.F., 1987: Characrerization of rock joint surfaces by fractal dimension.—Proc 28th U.S. Rock Mech. Symp.; 1223–1236.Google Scholar

Copyright information

© International Association of Engineering Geology 1992

Authors and Affiliations

  • F. J. Brosch
  • P. Pölsler
  • G. Riedmüller
    • 1
  1. 1.Institute of Engineering Geology and Applied MineralogyGraz University of TechnologyGrazAustria

Personalised recommendations