Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily

  • H. -J. Gruss


The tumor necrosis factor receptor superfamily at present consists of ten different transmembrane (type I) glycoproteins with characteristic limited sequence homology for the cysteine-rich repeats in the extracellular domain. In parallel the tumor necrosis factor ligand superfamily has been recognized by discovery of ligands for all members of the receptor superfamily. These molecules are also transmembrane (type II) glycoproteins, with the exception of lymphotoxin-α which is the only entirely secreted protein of the tumor necrosis factor-like proteins. Several members of the ligand superfamily, including tumor necrosis factor and CD95L also exist in a biologically active soluble form. The tumor necrosis factor ligand superfamily contains at present ten different proteins. In addition, NGFR p75 binds to a second family of proteins (neurotrophins). These nerve growth factor-like dimeric soluble molecules are basic neurotrophic factors and the five members (NGF, BDNF, NT-3, NT-4, NT-5) are not related to the tumor necrosis factor superfamily ligands. The members of the tumor necrosis factor ligand superfamily (TNF, LT-α, LT-β, CD27L, CD30L, CD40L, CD95L, 4-1BB, OX40L, TRAIL) share common biological activities, but some properties are shared by only some ligands, while others are unique. The diverse biological activities but some properties are shared by only some ligands, while others are unique. The diverse biological activities triggered through tumor necrosis factor receptors have been linked to the regulation of cellular activation, including immune responses and inflammatory reactions, but also with the pathology of a series of human diseases.

Key words

Tumor necrosis factor Ligands Receptors Biology Human diseases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mallett S, Barclay AN. A new superfamily of cell surface proteins related to the nerve growth factor receptor. Immunol Today 1991; 12: 220.PubMedCrossRefGoogle Scholar
  2. 2.
    Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, Kooten C van, Liu YJ, Rousset F, Saeland S, The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12: 881.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily family of cellular and viral proteins: activation, constimulation, and death. Cell 1994; 75: 959.CrossRefGoogle Scholar
  4. 4.
    Gruss H-J, Dower SK. TNF ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 1995; 85: 3378PubMedGoogle Scholar
  5. 5.
    Armitage RJ, Tumor necrosis factor receptor superfamily members and their ligands. Curr Opin Immunol 1994; 6: 407PubMedCrossRefGoogle Scholar
  6. 6.
    Bradshaw RA, Blundell TL, Lapatto R, McDonald NQ, Murray-Rust J. Nerve growth factor revisited. Trends Biochem Sci 1993; 18: 48.PubMedCrossRefGoogle Scholar
  7. 7.
    Eide FF, Lowenstein DH, Reichardt LF. Neurotrophins and their receptors—current concepts and implications for neurologic disease. Exp Neurol 1993; 121: 220.CrossRefGoogle Scholar
  8. 8.
    Johnson D, Lanahan A, Buck CR, Sehgal A, Morgan C, Mercer E, Bothwell M, Chao M, Expression and structure of the human NGF receptor. Cell 1986; 47: 545PubMedCrossRefGoogle Scholar
  9. 9.
    Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237: 1154.PubMedCrossRefGoogle Scholar
  10. 10.
    Banner DW, D'Arcy A, Janes W, Gentz R, Schoenfeld H-J, Broger C, Loetscher H, Lesslauer W. Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: implications for TNF receptor activation. Cell 1993; 73: 431.PubMedCrossRefGoogle Scholar
  11. 11.
    Gruss H-J, Herrmann F. CD30 ligand, a member of the TNF ligand superfamily, with growth and activation control for CD30+lymphoid and lymphoma cells. Leuk Lymphoma 1996; 20: 397.Google Scholar
  12. 12.
    Cayabyab M, Phillips JH, Lanier LL. CD40 preferentially costimulates activation of CD4+ T lymphocytes. J Immunol 1994; 152:1523.PubMedGoogle Scholar
  13. 13.
    Bowman MR, Crimmins MAW, Yetz-Aldape J, Kriz R, Kelleher K, Herrmann S. The cloning of CD70 and its identification as the ligand for CD27. J Immunol 1994;152:1756.PubMedGoogle Scholar
  14. 14.
    Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim KK, Kwon BS. 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-μ-primed splenic B cells. Eur J Immunol 1994;24:367.PubMedCrossRefGoogle Scholar
  15. 15.
    Stüber E, Neurath M, Calderhead D, Fell HP, Strober W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family induces proliferation and differentiation in murine splenic B cells. Immunity 1995;2:507.PubMedCrossRefGoogle Scholar
  16. 16.
    Ware CF, Van Arsdale S, Van Arsdale TL. Apoptosis mediated by the TNF-related cytokine and receptor families. J Cell Biochem 1996;60:47.PubMedCrossRefGoogle Scholar
  17. 17.
    Beutler B, Huffel C van. Unraveling function in the TNF ligand and receptor families. Science 1994;264:667.PubMedCrossRefGoogle Scholar
  18. 18.
    Gruss H-J, Dower SK. The TNF ligand superfamily and its relevance for human diseases. Cytokines Mol Therapy 1995; 1:75.Google Scholar
  19. 19.
    Stamenkovic I, Clark EA, Seed B. A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J 1989;8:1403.PubMedGoogle Scholar
  20. 20.
    Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci USA 1989;86:1963.PubMedCrossRefGoogle Scholar
  21. 21.
    Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 1990;248:1019.PubMedCrossRefGoogle Scholar
  22. 22.
    Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, Granger GA, Lentz R, Raab H, Kohr KJ, Goeddel DV. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 1990;61:361.PubMedCrossRefGoogle Scholar
  23. 23.
    Loetscher H, Pan Y-CE, Lahm H-W, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 1990; 61:351.PubMedCrossRefGoogle Scholar
  24. 24.
    Mallett S, Fossum S, Barclay AN. Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes—a molecule related to nerve growth factor receptor. EMBO J 1990;9:1063.PubMedGoogle Scholar
  25. 25.
    Camerini D, Walz G, Loenen WAM, Borst J, Seed B. The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J Immunol 1991;147:3165.PubMedGoogle Scholar
  26. 26.
    Dürkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's disease. Cell 1992;68:421.PubMedCrossRefGoogle Scholar
  27. 27.
    Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S-I, Sameshima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991;66:233.PubMedCrossRefGoogle Scholar
  28. 28.
    Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C, Li-Weber M, Richards S, Dhein J, Trauth BC, Postingl H, Krammer PH. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem 1992;267:10709.PubMedGoogle Scholar
  29. 29.
    Baens M, Chaffanet M, Cassiman J-J, Berghe H van den, Marynen P. Construction and evaluation of a hncDNA library of human 12p transcribed sequences derived from a somatic cell hybrid. Genomics 1993;16:214.PubMedCrossRefGoogle Scholar
  30. 30.
    Bazan JF. Emerging families of cytokines and receptors. Curr Biol 1993;3:603.PubMedCrossRefGoogle Scholar
  31. 31.
    Pennica D, Nedwin GE, Hayflich JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, Goeddel DV. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 1984;312:724.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang AM, Creasey AA, Ladner MB, Lin LS, Strickler J, Van Arsdell JN, Yamamoto R, Mark DF. Molecular cloning of the complementary DNA for human tumor necrosis factor. Science 1985;228:149.PubMedCrossRefGoogle Scholar
  33. 33.
    Gray PW, Aggarwal BB, Benton CV, Bringman TS, Henzel WJ, Jarrett JA, Leung DW, Moffat B, Ng P, Svedersky LP, Palladino MA, Nedwin GE. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature 1984;312:721.PubMedCrossRefGoogle Scholar
  34. 34.
    Goodwin RG, Alderson MR, Smith CA, Armitage RJ, Vanden-Bos T, Jerzy R, Tough TW, Schoenborn MA, Davis-Smith T, Hennen K, Falk B, Cosman D, Baker E, Sutherland GR, Grabstein KH, Farrah T, Giri JG, Beckmann MP: Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 1993;73:447.PubMedCrossRefGoogle Scholar
  35. 35.
    Smith CA, Gruss HJ, Davis T, Anderson D, Farrah T, Baker E, Sutherland GR, Brannan CI, Copeland NG, Jenkins NA, Grabstein KH, Gliniak B, McAlister IB, Fanslow W, Alderson M, Falk B, Gimpel S, Gillis S, Din WS, Goodwin RG, Armitage RJ. CD30 antigen, a marker for Hodgkin's lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 1993;73:1349.PubMedCrossRefGoogle Scholar
  36. 36.
    Armitage RJ, Fanslow WC, Strockbine L, Sato TA, Clifford KN, Macduff BM, Anderson DM, Gimpel SD, Davis-Smith T, Maliszewski CR, Clark EA, Smith CA, Grabstein KH, Cosman D, Spriggs MK. Molecular and biological characterization of a murine ligand for CD40. Nature 1992;357:80.PubMedCrossRefGoogle Scholar
  37. 37.
    Goodwin RG, Din WS, Davis-Smith T, Anderson DM, Gimpel SD, Sato TA, Maliszewski CR, Brannan CI, Copeland NG, Jenkins NA, Farrah T, Armitage RJ, Fanslow WC, Smith CA. Molecular cloning of a ligand for the inducible T-cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol 1993;23:2631.PubMedCrossRefGoogle Scholar
  38. 38.
    Baum PR, Gayle RB III, Ramsdell F, Srinivasan S, Sorensen RA, Watson ML, Seldin MF, Baker E, Sutherland GR, Clifford KN, Alderson MR, Goodwin RG, Fanslow WC. Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1 regulated protein gp34. EMBO J 1994;13:3992.PubMedGoogle Scholar
  39. 39.
    Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J Exp Med 1994;180:757.PubMedCrossRefGoogle Scholar
  40. 40.
    Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993;75:1169.PubMedCrossRefGoogle Scholar
  41. 41.
    Wiley SR, Schooley K, Smolak PJ, Din WS, Huang C-P, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673.PubMedCrossRefGoogle Scholar
  42. 42.
    Browning JL, Androlewicz MJ, Ware CF. Lymphotoxin and an associated 33-kDa glycoprotein are expressed on the surface of an activated human T cell hybridoma. J Immunol 1991; 147:1230.PubMedGoogle Scholar
  43. 43.
    Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP, Hession C, O'Brien-Greco B, Foley SF, Ware CF. Lymphotoxin β, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 1993;72:847.PubMedCrossRefGoogle Scholar
  44. 44.
    Crowe PD, Van Arsdale TL, Walter BN, Ware CF, Hession C, Ehrenfels B, Browning JL, Din WS, Goodwin RG, Smith CA. A lymphotoxin-β-specific receptor. Science 1994;264:707.PubMedCrossRefGoogle Scholar
  45. 45.
    Eck MJ, Sprang SR. The structure of tumor necrosis factor-α at 2.6 Å resolution. Implications for receptor binding. J Biol Chem 1989;264:17595.PubMedGoogle Scholar
  46. 46.
    Jones CY, Stuart DI, Walker NPC. Structure of tumour necrosis factor. Nature 1989;338:225.PubMedCrossRefGoogle Scholar
  47. 47.
    Eck MJ, Ultsch M, Rinderknecht E, Vos AM de, Sprang SR. The structure of human lymphotoxin (tumor necrosis factor-β) at 1.9-Å resolution. J Biol Chem 1992;267:2119.PubMedGoogle Scholar
  48. 48.
    Karpusas M, Hsu Y-M, Wang J-H, Thompson J, Lederman S, Chess L, Thomas D. 2Å crystal structure of an extracellular fragment of human CD40 ligand. Structure 1995;3:1031.PubMedCrossRefGoogle Scholar
  49. 49.
    Peitsch MC, Jongeneel CV. A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int Immunol 1993;5:233.PubMedCrossRefGoogle Scholar
  50. 50.
    Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Derwar SS, Torrance DS, Otten-Evans C, Greenstreet T, Weerawarna K, Kronheim SR, Petersen M, Gerhart M, Koslosky CJ, March CJ, Black PA. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 1994;370:218.PubMedCrossRefGoogle Scholar
  51. 51.
    Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 1988;53:45.PubMedCrossRefGoogle Scholar
  52. 52.
    Tanaka M, Suda T, Takahashi T, Nagata S. Expression of the functional soluble form of human FAS ligand in activated lymphocytes. EMBO J 1995;14:1129.PubMedGoogle Scholar
  53. 53.
    Graf D, Müller S, Korthäuer U, Kooten C van, Weise C, Kroezek RA. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol 1995;25:1749.PubMedCrossRefGoogle Scholar
  54. 54.
    Gruss H-J, Pinto A, Duyster J, Poppema S, Herrmann F. Hodgkin disease: a tumor with disturbed immunological pathways. Immunol Today. In Press.Google Scholar
  55. 55.
    Fuchs P, Strehl S, Dworzak M, Himmler A, Ambros PF. Structure of the human TNF receptor 1 (p60) gene (TNFRI) and localization to chromosome 12p13. Genomics 1992;13:219.PubMedCrossRefGoogle Scholar
  56. 56.
    Loenen WAM, Gravestein LA, Beumer S, Melief CJM, Hagemeijer A, Borst J. Genomic organization and chromosomal localization of the human CD27 gene. J Immunol 1992;149: 3937.PubMedGoogle Scholar
  57. 57.
    Grimaldi JC, Torres R, Kozak CA, Chang R, Clark EA, Howard M, Cockayne DA. Genomic structure and chromosomal mapping of the murine CD40 gene. J Immunol 1992;149:3921.PubMedGoogle Scholar
  58. 58.
    Kwon BS, Kozak CA, Kim KK, Pickard RT. Genomic organization and chromosomal localization of the T-cell antigen 4-IBB. J Immunol 1994;152:2256.PubMedGoogle Scholar
  59. 59.
    Birkeland ML, Copeland NG, Gilbert DJ, Jenkins NA, Barclay AN. Gene structure and chromosomal localization of the mouse homologue of rat OX40 protein. Eur J Immunol 1995;25:926.PubMedCrossRefGoogle Scholar
  60. 60.
    Behrmann I, Walczak H, Krammer PH. Structure of the human APO-1 gene. Eur J Immunol 1994;24:3057.PubMedCrossRefGoogle Scholar
  61. 61.
    Loenen WAM. Receptors and ligands of the nerve growth factor receptor gene family. Curr Top Genet 1994;12:21.Google Scholar
  62. 62.
    Gruss H-J, Hirschstein D, Alderson MR, Herrmann F, Armitage RJ. Regulation of CD30 ligand expression on peripheral blood T cells: possible functional involvement in T-T cell interaction. J Immunol. In press.Google Scholar
  63. 63.
    Clark EA, Ledbetter JA. How B and T cells talk to each other. Nature 1994;367:425.PubMedCrossRefGoogle Scholar
  64. 64.
    Barrett TB, Shu G, Clark EA. CD40 signaling activates CD11a/CD18 (LFA-1)-mediated adhesion in B cells. J Immunol 1991;146:1722.PubMedGoogle Scholar
  65. 65.
    Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993;177:925.PubMedCrossRefGoogle Scholar
  66. 66.
    Gruss H-J, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 1994;83:2045.PubMedGoogle Scholar
  67. 67.
    Kennedy MK, Mohler KM, Shanebeck KD, Baum PR, Picha KS, Otte-Evans CA, Janeway CA, Grabstein KH. Induction of B cell costimulatory function by recombinant murine CD40 ligand. Eur J Immunol 1994;24:116.PubMedCrossRefGoogle Scholar
  68. 68.
    Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 1985; 316:552.PubMedCrossRefGoogle Scholar
  69. 69.
    Alderson MR, Smith CA, Tough TW, Davis-Smith T, Armitage RJ, Falk B, Roux E, Baker E, Sutherland GR, Din WS, Goodwin RG. Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol 1994;24:2219.PubMedCrossRefGoogle Scholar
  70. 70.
    Beutler B. Tumor necrosis factors: the molecules and their emerging role in medicine. New York: Raven Press, 1992.Google Scholar
  71. 71.
    Nagata S, Golstein P. The Fas death factor. Science 1995; 267:1449.PubMedCrossRefGoogle Scholar
  72. 72.
    Gravestein LA, Blom B, Nolten LA, Vries E de, Horst G van der, Ossendorp F, Borst J, Loenen WAM. Cloning and expression of murine CD27: comparison with 4-1BB, another lymphocyte-specific member of the nerve growth factor receptor family. Eur J Immunol 1993;23:943.PubMedCrossRefGoogle Scholar
  73. 73.
    Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 1993;268:10932.PubMedGoogle Scholar
  74. 74.
    Tartaglia LA, Ayres TM, Wong GHW, Goeddel DV. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993;74:845.PubMedCrossRefGoogle Scholar
  75. 75.
    Feinstein E, Kimchi A, Wallach D, Boldin M, Varfolomeev E. The death domain: a module shared by proteins with diverse cellular functions. Trends Biol Sci 1995;20:342.CrossRefGoogle Scholar
  76. 76.
    Heller RA, Krönke M. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol 1994;126:5.PubMedCrossRefGoogle Scholar
  77. 77.
    Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumour necrosis factor receptors: structure and function. Trends Cell Biol 1995;5:392.PubMedCrossRefGoogle Scholar
  78. 78.
    Smith RA, Baglioni C. The active form of tumor necrosis factor is a trimer. J Biol Chem 1987;262:6951.PubMedGoogle Scholar
  79. 79.
    Jones EY, Stuart DI, Walker NP. The three-dimensional structure of tumour necrosis factor. Prog Clin Biol Res 1990;349:321.PubMedGoogle Scholar
  80. 80.
    Pushkareva M, Obeid LM, Hannun YA. Ceramide: an endogenous regulator of apoptosis and growth suppression. Immunol Today 1995;16:294.PubMedCrossRefGoogle Scholar
  81. 81.
    Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994;77:325.PubMedCrossRefGoogle Scholar
  82. 82.
    Wiegmann K, Schütze S, Machleidt T, Witte D, Krönke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 1994;78:1005.PubMedCrossRefGoogle Scholar
  83. 83.
    Dressler KA, Mathias S, Kolesnick RN. Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science 1992;255:1715.PubMedCrossRefGoogle Scholar
  84. 84.
    Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-jun kinases. Nature 1994;369:156.PubMedCrossRefGoogle Scholar
  85. 85.
    Berberich I, Shu G, Siebelt F, Woodgett JR, Kyriakis JM, Clark EA. Cross-linking CD40 on B cells preferentially induces stress-activated protein kinases rather than mitogen-activated protein kinases. EMBO J 1996;15:92.PubMedGoogle Scholar
  86. 86.
    Knox KA, Gordon J. Protein tyrosine phosphorylation is mandatory for CD40-mediated rescue of germinal center B cells from apoptosis. Eur J Immunol 1993;23:2578.PubMedCrossRefGoogle Scholar
  87. 87.
    Ren CL, Morio T, Fu SF, Geha RS. Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase Cγ2. J Exp Med 1994;179:673.PubMedCrossRefGoogle Scholar
  88. 88.
    Faris M, Gaskin F, Parsons T, Fu SM. CD40 signaling pathway: anti-CD40 monoclonal antibody induces rapid dephosphorylation and phosphorylation of tyrosine-phosphorylated proteins including protein tyrosine kinase lyn, fyn, and syk and the appearance of a 28-kD tyrosine phosphorylated protein. J Exp Med 1994;179:1923.PubMedCrossRefGoogle Scholar
  89. 89.
    Berberich I, Shu GL, Clark EA. Cross-linking CD40 on B cells rapidly activates nuclear factor-kB. J Immunol 1994;153:4357.PubMedGoogle Scholar
  90. 90.
    Wendtner C-M, Schmitt B, Gruss H-J, Druker BJ, Emmerich B, Goodwin RG, Hallek M. CD30 ligand signal transduction involves activation of a tyrosine kinase and of mitogen-activated protein kinase in a Hodgkin's lymphoma cell line. Cancer Res 1995;55:4157.PubMedGoogle Scholar
  91. 91.
    McDonald PP, Cassatella M, Bald A, Maggi E, Romagnani S, Gruss H-J, Pizzolo G. CD30 ligation induces NF-κB activation in human T cell lines. Eur J Immunol 1995;25:2870.PubMedCrossRefGoogle Scholar
  92. 92.
    Gruss H-J, Ulrich D, Dower SK, Hermann F, Brach MA. Activation of Hodgkin cells via the CD30 receptor induces autocrine secretion of interleukin-6 engaging the NF-κB transcription factor. Blood 1996;87:2443.PubMedGoogle Scholar
  93. 93.
    Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994; 78:681.PubMedCrossRefGoogle Scholar
  94. 94.
    Cheng G, Cleary AM, Ye Z-S, Hong DI, Lederman S, Baltimore D. Involvement of CRAFI, a relative TRAF, in CD40 signaling. Science 1995;267:1494.PubMedCrossRefGoogle Scholar
  95. 95.
    Mosialos G, Birkenbach M, Yalamanchili R, Van Arsdale T, Ware C, Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell, 1995;80:389.PubMedCrossRefGoogle Scholar
  96. 96.
    Hu HM, O'Rourke K, Boguski MS, Dixit VM. A novel RING finger protein interacts with the cytoplasmic domain of CD40.. J Biol Chem 1994;269:30069.PubMedGoogle Scholar
  97. 97.
    Regnier CH, Tomasetto C, Moog-Lutz C, Chenard M-P, Wendling C, Basset P, Rio M-C. Presence of a new conserved domain in CARTI, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem 1995;270:25715.PubMedCrossRefGoogle Scholar
  98. 98.
    Rothe M, Sarma V, Dixit VM, Goeddel DV. TRAF2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science 1995;269:1424.PubMedCrossRefGoogle Scholar
  99. 99.
    Cleyeland JL, Ihle JN. Contenders in FasL/TNF death signaling. Cell 1995;81:479.CrossRefGoogle Scholar
  100. 100.
    Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, Testi R. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 1993;177:1547.Google Scholar
  101. 101.
    Hsu H, Xiong J, Goeddel DV. The TNF receptor I-associated protein TRAAD signals cell death and NF-κB activation. Cell 1995;81:495.PubMedCrossRefGoogle Scholar
  102. 102.
    Stewart BW. Mechanisms of apoptosis: integration of genetic, biochemical, and cellular indicators. J Natl Cancer Inst 1994; 86:1286.PubMedCrossRefGoogle Scholar
  103. 103.
    Los M, Van de Craen M, Penning LC, Schenk H, Westendorp M, Bäuerle PA, Dröge W, Krammer PH, Fiers W, Schulze-Osthoff K. Requirement of an ICE/CED-3 protease for Fas/APO-I-mediated apoptosis. Nature 1995;375:81.PubMedCrossRefGoogle Scholar
  104. 104.
    Enari M, Hug H, Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 1995;375:78.PubMedCrossRefGoogle Scholar
  105. 105.
    Pronk GJ, Ramer K, Amiri P, Williams LT. Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science 1996;271:808.PubMedCrossRefGoogle Scholar
  106. 106.
    Meakin SO, Shooter EM. The nerve growth factor family of receptors. Trends Neurosci 1992;15:323.PubMedCrossRefGoogle Scholar
  107. 107.
    Chao MV. Neurotrophin receptors: a window into neuronal differentiation. Neuron 1992;9:583.PubMedCrossRefGoogle Scholar
  108. 108.
    Otten U, Ehrhard P, Peck R. Nerve growth factor induces growth and differentiation of human B lymphocytes. Proc Natl Acad Sci USA 1989;86:10059.PubMedCrossRefGoogle Scholar
  109. 109.
    Lee K-F, Huber J, Landis SC, Sharpe AH, Chao MV, Jaenisch R. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 1992;69:737.PubMedCrossRefGoogle Scholar
  110. 110.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1973;72:3666.CrossRefGoogle Scholar
  111. 111.
    Beutler B, Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 1986;320:584.PubMedCrossRefGoogle Scholar
  112. 112.
    De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J, Russell JH, Karr R, Chaplin DD. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 1994;264:703.PubMedCrossRefGoogle Scholar
  113. 113.
    Thoma B, Grell M, Pfizenmaier K, Scheurich P. Identification of a 60-kD tumor necrosis factor (TNF) receptor as the major signal transducing component in TNF responses. J Exp Med 1990;172:1019.PubMedCrossRefGoogle Scholar
  114. 114.
    Ware WF, Crowe PD, Vanarsdale TL, Andrews JL, Grayson MH, Jerzy R, Smith CA, Goodwin RG. Tumor necrosis factor (TNF) receptor expression in T lymphocyte. Differential regulation of the type I TNF receptor during activation of resting and effector T cells. J Immunol 1991;147:4229.PubMedGoogle Scholar
  115. 115.
    Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 1994;45:491.PubMedCrossRefGoogle Scholar
  116. 116.
    Tracey KJ, Wei H, Manogue KR, Fong Y, Hesse DG, Nguyen HT, Kuo GC, Beutler B, Coltran RS, Cerami A, Lowry SF. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med 1988;167:1211.PubMedCrossRefGoogle Scholar
  117. 117.
    Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem 1988; 57:505.PubMedCrossRefGoogle Scholar
  118. 118.
    Pfeffer K, Matsuyama T, Kündig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Krönke M, Mak TW. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb toL. monocytogenes infection. Cell 1993;73:457.PubMedCrossRefGoogle Scholar
  119. 119.
    Rothe J, Lesslauer W, Lötscher H, Lang Y, Koebel P, Kontgen F, Althage A, Zinkernagel R, Steinmetz M, Bluethmann H. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection byListeria monocytogenes. Nature 1993;364:798.PubMedCrossRefGoogle Scholar
  120. 120.
    Peppel K, Poltorak A, Melhado I, Jirik F, Beutler B. Expression of a TNF inhibitor in transgenic mice. J Immunol 1993; 151:5699.PubMedGoogle Scholar
  121. 121.
    Kolls J, Peppel K, Silva M, Beutler B. Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene transfer. Proc Natl Acad Sci USA 1994;91:215.PubMedCrossRefGoogle Scholar
  122. 122.
    Beutler B, Cerami A. The biology of cachectin/TNF—a primary mediator of the host response. Annu Rev Immunol 1989; 7:625.PubMedGoogle Scholar
  123. 123.
    Hintzen RQ, Jong R de, Lens SMA, Lier RAW van. CD27: marker and mediator of T-cell activation? Immunol Today 1994;15:307.PubMedCrossRefGoogle Scholar
  124. 124.
    Hintzen RQ, Jong R de, Hack CE, Chamuleau M, Vries EFR de, Berge IJM ten, Borst J, Lier RAW van. A soluble form of the human T cell differentiation antigen CD27 is released after triggering of the TCR/CD3 complex. J Immunol 1991;147:29.PubMedGoogle Scholar
  125. 125.
    Jong R de, Loenen WAM, Brouwer M, Emmerik L van, Vries EFR de, Borst J, Lier RAW van. Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol 1991;146:2488.PubMedGoogle Scholar
  126. 126.
    Hintzen RQ, Jong R de, Lens SMA, Brouwer M, Baars P, Lier RAW van. Regulation of CD27 expression on subsets of mature T-lymphocytes. J Immunol 1993;151:2426.PubMedGoogle Scholar
  127. 127.
    Baars PA, Maurice MM, Rep M, Hooibrink B, Lier RAW van. Heterogeneity of the circulating human CD4+ T cell population. Further evidence that the CD4+ CD45RA-CD27-T cell subset contains specialized primed T cells. J Immunol 1995; 154:17.PubMedGoogle Scholar
  128. 128.
    Maurer D, Holter W, Majdic O, Fischer GF, Knapp W. CD27 expression by a distinct subpopulation of human B lymphocytes. Eur J Immunol 1990;20:2679.PubMedCrossRefGoogle Scholar
  129. 129.
    Maurer D, Fischer GF, Fae I, Majdic O, Stuhlmeier K, Jeney N van, Holter W, Knapp W. IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset. Immunol 1992;148:3700.Google Scholar
  130. 130.
    Agematsu K, Kobata T, Yang F-C, Nakazawa T, Fukushima K, Kitahara M, Mori T, Sugita K, Morimoto C, Komiyama A. CD27/CD70 interaction directly drives B cell IgG and IgM synthesis. Eur J Immunol 1995;25:2825.PubMedCrossRefGoogle Scholar
  131. 131.
    Sugita K, Robertson MJ, Torimoto Y, Ritz J, Schlossman SF, Morimoto C. Participation of the CD27 antigen in the regulation of IL-2-activated human natural killer cells. J Immunol 1992;149:1199.PubMedGoogle Scholar
  132. 132.
    Hintzen RQ, Lens SM, Beckmann MP, Goodwin RG, Lynch D, Lier RAW van. Characterization of the human CD27 ligand, a novel member of the TNF gene family. J Immunol 1994; 152:1762.PubMedGoogle Scholar
  133. 133.
    Agematsu K, Kobata T, Sugita K, Freeman GJ, Beckman MP, Schlossman SF, Morimoto C. Role of CD27 in T cell immune response. Analysis by recombinant soluble CD27. J Immunol 1994;153:1421.PubMedGoogle Scholar
  134. 134.
    Hintzen RQ, Lens SMA, Koopman G, Pals ST, Spits H, Lier RAW van, CD70 represents the human ligand for CD27. Int Immunol 1994: 6:477.PubMedCrossRefGoogle Scholar
  135. 135.
    Hintzen RQ, Lens SMA, Lammers K, Kuiper H, Beckman MP, Lier RAW van. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J Immunol 1995: 154:2612.PubMedGoogle Scholar
  136. 136.
    Foss HD, Herbst H, Oelmann E, Samol J, Grebe M, Blankenstein T, Matthes J, Qin ZH, Falini B, Pileri S, Diamantstein T, Stein H. Lymphotoxin, tumour necrosis factor and interleukin-6 gene transcripts are present in Hodgkin and Reed-Sternberg cells of most Hodgkin's disease cases. Br J Haematol 1993: 84:627PubMedGoogle Scholar
  137. 137.
    Oers MH van, Pals ST, Evers LM, Schoot CE van der, Koopman G, Bonfrer JM, Hintzen RQ, Borne AE von dem, Lier RAW van. Expression and release of CD27 in human B-cell malignancies. Blood 1993: 82:3430.PubMedGoogle Scholar
  138. 138.
    Ranheim EA, Cantwell MJ, Kipps TJ. Expression of CD27 and its ligand, CD70, on chronic lymphocytic leukemia B cells. Blood 1995: 85:3556.PubMedGoogle Scholar
  139. 139.
    Gruss H-J, Hübinger G, Scheffrahn I, Brach MA, Herrmann F. The CD30 ligand and CD40 ligand regulate CD54 surface expression and release of its soluble form by Hodgkin and Reed-Sternberg cells. Leukemia, 1996; 10:829.PubMedGoogle Scholar
  140. 140.
    Hintzen RQ, Lier RWA van, Kuijpers KC, Baars PA, Schaasberg W, Lucas CJ, Polman CH. Elevated levels of a soluble form of the T cell activation antigen CD27 in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 1991; 35:211.PubMedCrossRefGoogle Scholar
  141. 141.
    Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M, Diehl V. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells. Nature 1982; 299:65.PubMedCrossRefGoogle Scholar
  142. 142.
    Falini B, Pileri S, Pizzolo G, Dürkop H, Flenghi L, Stirpe F, Martelli MF, Stein H. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood 1995; 85:1.PubMedGoogle Scholar
  143. 143.
    Andreesen R, Osterholz J, Löhr GW, Bross KJ. A Hodgkin cell-specific antigen is expressed on a subset of auto-and allocativated T (helper) lymphoblasts. Blood 1984; 63:1299.PubMedGoogle Scholar
  144. 144.
    Ellis TM, Simms PE, Slivnick DJ, Jäck H-M, Fisher RI. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO+ T cells. J Immunol 1993; 151:2380.PubMedGoogle Scholar
  145. 145.
    Gruss H-J, DaSilva N, Hu Z-B, Uphoff CC, Goodwin RG, Drexler HG. Expression and regulation of CD30 ligand and CD30 in human leukemia-lymphoma cell lines. Leukemia 1994; 8:2083.PubMedGoogle Scholar
  146. 146.
    Gruss H-J, Armitage RJ, Hübinger G, Scheffrahn I, Daniel P, Goodwin RG, Herrmann F. Normal human B cells lack CD30L-mediated biological responses, but express a functional CD30L as the cognate for CD30. J Immunol. In press.Google Scholar
  147. 147.
    Bowen MA, Olsen KJ, Cheng L, Avila D, Podack ER. Functional effects of CD30 on a large granular lymphoma cell line, YT: inhibition of cytotoxicity, regulation of CD28 and IL-2R. and induction of homotypic aggregation. J Immunol 1993; 151:5896.PubMedGoogle Scholar
  148. 148.
    Gruss H-J, Herrmann F, Drexler HG. Hodgkin's disease: a cytokine producing tumor. Crit Rev Oncogenesis 1994; 5:23.Google Scholar
  149. 149.
    Gruss H-J, Pinto A, Gloghini A, Wehnes E, Wright B, Boiani N, Aldinucci D, Gattei V, Zagonel V, Smith CA, Kadin ME, Schilling C von, Goodwin RG, Hermann F, Carbone A. CD30 ligand expression in non-malignant and Hodgkin's disease-in-volved lymphoid tissues, Am J Pathol 1996; 149: In press.Google Scholar
  150. 150.
    Nadali G, Vinante F, Ambrosetti A, Todeschini G, Veneri D, Zanotti R, Meneghini V, Ricetti MM, Benedetti F, Vassanelli A, Perona G, Chilosi M, Menestrina F, Fiachini M, Stein H, Pizzolo G, Serum levels of soluble CD30 are elevated in the majority of untreated patients with Hodgkin's disease and correlate with clinical features and prognosis. J Clin Oncol 1994; 12:793.PubMedGoogle Scholar
  151. 151.
    Del Prete G, Maggi E, Pizzolo G, Romagnani S. CD30, Th2 cytokines and HIV infection: a complex and fascinating link. Immunol Today 1995; 16:76.PubMedCrossRefGoogle Scholar
  152. 152.
    Manetti R, Annunziato F, Biagiotti R, Giudizi MG, Piccinni M-P, Giannarini L, Sampognaro S, Parronchi P, Vinante F, Pizzolo G, Maggi E, Romagnani S. CD30 expression by CD8+ T cells producing type 2 helper cytokines. Evidence for large numbers of CD8+ CD30+ T cell clones in human immunodeficiency virus infection. J Exp Med 1994; 180:2407.PubMedCrossRefGoogle Scholar
  153. 153.
    Del Prete GF, De Carli M, Almerigogna F, Daniel CK, D'Elios MM, Zancuoghi G, Pizzolo G, Romagnani S. Preferential expression of CD30 by human CD4+ T cells producing Th2-type cytokines. FASEB J 1995; 9:81.PubMedGoogle Scholar
  154. 154.
    Pizzolo G, Vinante F, Morosato L, Nadali G, Chilosi M, Gandini G, Sinicco A, Raiteri S, Semenzato G, Stein H, Perona G. High serum level of soluble form of CD30 molecule in the early phase of HIV-1 infection as an independent predictor of progression to AIDS. Aids 1994; 8:741.PubMedCrossRefGoogle Scholar
  155. 155.
    Biswas P, Smith CA, Goletti D, Hardy EC, Jackson RW, Fauci AS, Cross-linking of CD30 induces HIV expression in chronically infected T cells. Immunity 1995; 2:587.PubMedCrossRefGoogle Scholar
  156. 156.
    Maggi E, Annunziato F, Manetti R, Biagiotti R, Giudizi MG, Ravina A, Almerigogna F, Boiani N, Alderson M, Romagnani S. Activation of HIV expression by CD30 triggering in CD4+ T cells from HIV-infected individuals. Immunity 1995; 3:251.PubMedCrossRefGoogle Scholar
  157. 157.
    Amakawa R, Hakem A, Kundig TM, Matsuyama T, Simard JJL, Timms E, Wakeham A, Mittrücker H-W, Griesser H, Takimoto H, Schmits R, Shahinian A, Ohashi PS, Penniger JM, Mak TW. Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 1996; 84:551.PubMedCrossRefGoogle Scholar
  158. 158.
    Kooten C van, Gaillard C, Galizzi J-P, Hermann P, Fossiez F, Banchereau J, Blanchard D. B cells regulated expression of CD40 ligand on activated T cells by lowering the mRNA level and through the release of soluble CD40. Eur J Immunol 1994; 24:787.PubMedCrossRefGoogle Scholar
  159. 159.
    Clark EA. CD40: a cytokine receptor in search of a ligand. Tissue Antigens 1990; 36:33.PubMedGoogle Scholar
  160. 160.
    Armitage RJ, Maliszweski CR, Alderson MR, Grabstein KH, Springgs MK, Fanslow WC. CD40L: a multi-functional ligand. Semin Immunol 1993; 5:401.PubMedCrossRefGoogle Scholar
  161. 161.
    Spriggs MK, Fanslow WC, Armitage RJ, Belmont J. The biology of the human ligand for CD40. J Clin Immunol 1993; 13:373.PubMedCrossRefGoogle Scholar
  162. 162.
    Armitage RJ, Tough TW, Macduff CM, Fanslow WC, Spriggs MK, Ramsdell F, Alderson MR. CD40 ligand is a T cell growth factor. Eur J Immunol 1993; 23:2326.PubMedCrossRefGoogle Scholar
  163. 163.
    Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 1993; 178:669.PubMedCrossRefGoogle Scholar
  164. 164.
    Galy AHM, Spits H. CD40 is functionally expressed on human thymic epithelial cells. J Immunol 1992; 149:775.PubMedGoogle Scholar
  165. 165.
    Callard RE, Armitage RJ, Fanslow WC, Spriggs MK, CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol Today 1993; 14:559.PubMedCrossRefGoogle Scholar
  166. 166.
    Notarangelo LD, Duse M, Ugazio AG, Immunodeficiency with hyper-IgM (HIM). Immunodefic Rev 1992; 3:101.PubMedGoogle Scholar
  167. 167.
    Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK, Fanslow WC, Belmont J, Spriggs MK. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 1993; 259:990.PubMedCrossRefGoogle Scholar
  168. 168.
    Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, Bajorath J, Grosmaire LS, Stenkamp R, Neubauer M, Roberts RL, Noelle RJ, Ledbetter JA, Francke U, Ochs HD. The CD40 ligand, gp 39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 1993; 72:291.PubMedCrossRefGoogle Scholar
  169. 169.
    Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1994; 1:167.PubMedCrossRefGoogle Scholar
  170. 170.
    Renshaw B, Fanslow WC III, Armitage RJ, Campbell KA, Liggitt D, Wright B, Davison B, Maliszewski CR. Humoral immune responses in CD40 lignad deficient mice. J Exp Med 1994; 180:1889.PubMedCrossRefGoogle Scholar
  171. 171.
    Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ, Flavell RA. Mice deficient for the CD40 ligand. Immunity 1994; 1:423.PubMedCrossRefGoogle Scholar
  172. 172.
    Foy TM, Shepherd DM, Durie FH, Aruffo A, Ledbetter JA, Noelle RJ. In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. II. Prolonged suppression of the humoral immune response by an antibody to the ligand for CD40, gp39. J Exp Med 1993; 178:1567.PubMedCrossRefGoogle Scholar
  173. 173.
    Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ. gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med 1994; 180:157.PubMedCrossRefGoogle Scholar
  174. 174.
    Durie FH, Fava RA, Foy TM, Aruffo A, Ledbetter JA, Noelle RJ. Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 1993; 261:1328.PubMedCrossRefGoogle Scholar
  175. 175.
    Gruss H-J, Herrmann F, Gattei V, Gloghini A, Pinto A, Carbone A, CD40/CD40 ligand interactions in normal, reactive and malignant lympho-hematopoietic tissues. Leuk Lymphoma. In press.Google Scholar
  176. 176.
    Gruss H-J, Hirschstein D, Wright B, Ulrich D, Caliguri MA, Strockbine L, Armitage RJ, Dower SK. Expression and function of CD40 on Hodgkin and Reed-Sternberg cells and the possible relevance for Hodgkin's disease. Blood 1994; 84:2305.PubMedGoogle Scholar
  177. 177.
    Carbone A, Gloghini A, Gattei V, Aldinucci D, Deagan M, De Paoli P, Zagonel V, Pinto A. Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin's disease cell lines. Blood 1995; 85:780.PubMedGoogle Scholar
  178. 178.
    Carbone A, Gloghini A, Gruss H-J, Pinto A. CD40 ligand is constitutively expressed in a subset of T-cell lymphomans and on the microenvironmental reactive T-cells of follicular lymphomas and Hodgkin's disease. Am J Pathol 1995; 147:912.PubMedGoogle Scholar
  179. 179.
    Inghirami G, Lederman S, Yellin MJ, Chadburn A, Chess L, Knowles DM. Phenotypic and functional characterization of T-BAM (CD40 ligand) T-cell non-Hodgkin's lymphoma. Blood 1994; 84:866.PubMedGoogle Scholar
  180. 180.
    Funakoshi S, Longo DL, Beckwith M, Conley DK, Tsarfaty G, Tsarfaty I, Armitage RJ, Fanslow WC, Spriggs MK, Murphy WJ. Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 1994; 83:2787.PubMedGoogle Scholar
  181. 181.
    Sumimoto S-I, Heike T, Kanazashi S-I, Shintaku N, Jung E-Y, Hata D, Katamura K, Mayumi M. Involvement of LFA-1/intracellular adhesion molecule-1-dependent cell adhesion in CD40-mediated inhibition of human B lymphoma cell death induced by surface IgM crosslinking. J Immunol 1994; 153:2488.PubMedGoogle Scholar
  182. 182.
    Heath AW, Chang R, Harada N, Santo-Sargumedo L, Gordon J, Hannum C, Campbell D, Shanafelt AB, Clark EA, Torres R, Howard M. Antibodies to murine CD40 stimulate normal B lymphocytes but inhibit proliferation of B lymphoma cells. Cell Immunol 1993; 152:468.PubMedCrossRefGoogle Scholar
  183. 183.
    Gruss H-J, Ulrich D, Braddy S, Armitage RJ, Dower SK. Recombinant CD30 ligand and CD40 ligand share common biological activities on Hodgkin and Reed-Sternberg cells. Eur J Immunol 1995; 25:2083.PubMedCrossRefGoogle Scholar
  184. 184.
    Hess S, Engelmann H. A novel function of CD40: induction of cell death in transformed cells. J Exp Med 1996; 183:159.PubMedCrossRefGoogle Scholar
  185. 185.
    Durie FH, Foy TM, Masters SR, Laman JD, Noelle RJ. The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol Today 1994; 15:406.PubMedCrossRefGoogle Scholar
  186. 186.
    Trauth BC, Klas C, Peters AMJ, Matzku S, Möller P, Falk W. Debatin K-M, Krammer PH, Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989; 245:301.PubMedCrossRefGoogle Scholar
  187. 187.
    Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989; 169:1747.PubMedCrossRefGoogle Scholar
  188. 188.
    Schulze-Osthoff K. The FAS/APO-1 receptor and its deadly ligand. Trends Cell Biol 1994; 4:421.PubMedCrossRefGoogle Scholar
  189. 189.
    Miyawaki T, Uehara T, Nibu R, Tsuji T, Yachie A, Yonehara S, Taniguchi N. Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 1992; 149:3753.PubMedGoogle Scholar
  190. 190.
    Iwai K, Miyawaki T, Takizawa T, Konno A, Ohta K, Yachie A, Saki H, Taniguchi N. Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood 1994; 84:1201.PubMedGoogle Scholar
  191. 191.
    Klas C, Debatin K-M, Jonker RR, Krammer PH. Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 1993; 5:625.PubMedCrossRefGoogle Scholar
  192. 192.
    Daniel PT, Krammer PH. Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells. J Immunol 1994; 152:5624.PubMedGoogle Scholar
  193. 193.
    Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364:806.PubMedCrossRefGoogle Scholar
  194. 194.
    Lacronique V, Mignon A, Fabre M, Viollet B, Rouquet N, Molina T, Porteu A, Henrion A, Bouscary D, Varlet P, Joulin V, Kahn A. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nature Med 1996; 2:80.PubMedCrossRefGoogle Scholar
  195. 195.
    Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH. Fas transduces activation signals in normal human T lymphocytes. J Exp Med 1993; 178:2231.PubMedCrossRefGoogle Scholar
  196. 196.
    Aggarwal BB, Singh S, LaPushin R, Totpal K. Fas antigen signals proliferation of numan human diploid fibroblast and its mechanism is different from tumor necrosis factor receptor. FEBS Lett 1995; 364:5.PubMedCrossRefGoogle Scholar
  197. 197.
    Mapara MY, Bargou R, Zugck C, Döhner H, Ustaoglu F, Jonker RR, Krammer PH, Dörken B. APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression. Eur J Immunol 1993; 23:702.PubMedCrossRefGoogle Scholar
  198. 198.
    Owen-Schaub LB, Meterissian S, Ford RJ. Fas/APO-1 expression and function on malignant cells of hematologic and nonhematologic origin. J Immunother 1993; 14:234.PubMedCrossRefGoogle Scholar
  199. 199.
    Nagata S. Mutations in the Fas antigen gene in Ipr mice. Semin Immunol 1994; 6:3.PubMedCrossRefGoogle Scholar
  200. 200.
    Nagata S. Fas and Fas ligand: a death factor and its receptor. Adv Immunol 1994; 57:129.PubMedCrossRefGoogle Scholar
  201. 201.
    Adachi M, Watanabe-Fukunaga R, Nagata S. Aberrant transcription caused by the insertion of an early transporsable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci USA 1993; 90:1756.PubMedCrossRefGoogle Scholar
  202. 202.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356:314.PubMedCrossRefGoogle Scholar
  203. 203.
    Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IAG, Debatin K-M, Fischer A, Villartay JP de. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268:1347.PubMedCrossRefGoogle Scholar
  204. 204.
    Roths JB, Murphy ED, Eicher EM. A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3h/HeJ mice. J Exp Med 1984; 159:1.PubMedCrossRefGoogle Scholar
  205. 205.
    Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994; 76:969.PubMedCrossRefGoogle Scholar
  206. 206.
    Lynch DH, Watson ML, Alderson MR, Baum PR, Miller RE, Tough T, Gibson M, Davis-Smith T, Smith CA, Hunter K, Bhat D, Din W, Goodwin RG, Seldin MF. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1994; 1:131.PubMedCrossRefGoogle Scholar
  207. 207.
    Nagata S, Suda T. Fas and Fas ligand: lpr and gld mutations. Immunol Today 1995; 16:39.PubMedCrossRefGoogle Scholar
  208. 208.
    Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, Nakao K, Nagata S. Expression of the Fas ligand in cells of T cell lineage. J Immunol 1995; 154:3806.PubMedGoogle Scholar
  209. 209.
    Brunner T, Mogil RJ, LaFace D, Yoo NJ, Mahboubl A, Echeverri F, Martin SJ, Force WR, Lynch DH, Ware CF, Green DR. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995; 373:441.PubMedCrossRefGoogle Scholar
  210. 210.
    Alderson MR, Tough TW, Davis-Smith T, Braddy S, Falk B, Schooley KA, Goodwin RG, Smith CA, Ramsdell F, Lynch DH. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 1994; 181:71.CrossRefGoogle Scholar
  211. 211.
    Dhein J, Walczak H, Bäumler C, Debatin K-M, Krammer PH. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 1995; 373:438.PubMedCrossRefGoogle Scholar
  212. 212.
    Ju S-T, Panka DJ, Cui H, Ettinger R, El-Khatib M, Sherr DH, Stanger BZ, Marshak-Rothstein A. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995; 373:444.PubMedCrossRefGoogle Scholar
  213. 213.
    Singer GG, Abbas AK. The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1994; 1:365.PubMedCrossRefGoogle Scholar
  214. 214.
    Vignaux F, Golstein P. Fas-based lymphocyte-mediated cytotoxicity aginst syngeneic activated lymphocytes: a regulatory pathway. Eur J Immunol 1994; 24:923.PubMedCrossRefGoogle Scholar
  215. 215.
    Russell JH. Activation-induced death of mature T cells in the regulation of immune responses. Curr Opin Immunol 1995; 7:382.PubMedCrossRefGoogle Scholar
  216. 216.
    Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin K-M, Krammer PH. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120 Nature 1995; 375:497.PubMedCrossRefGoogle Scholar
  217. 217.
    Hiramatsu N, Hayashi N, Katayama K, Mochizuki K, Kawanishi Y, Kasahara A, Fusamoto H, Kamada T. Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 1994; 19:1354.PubMedCrossRefGoogle Scholar
  218. 218.
    Galle PR, Hofmann WJ, Walczak H, Schaller H, Otto G, Stremmel W, Krammer PH, Runkel L. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 1995; 182:1223.PubMedCrossRefGoogle Scholar
  219. 219.
    Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994; 263:1759.PubMedCrossRefGoogle Scholar
  220. 220.
    Knipping E, Debatin K-M, Stricker K, Heilig B, Eder A, Krammer PH. Identification of soluble APO-1 in supernatants of human B- and T-cell lines and increased serum levels in B- and T-cell leukemias. Blood 1995; 85:1562.PubMedGoogle Scholar
  221. 221.
    Gruss H-J, Kadin ME, Alderson MR, Lynch DH, Herrmann F. Functional expression of CD95 (FAS/APO-1) in Hodgkin disease: expression and function on Hodgkin and Reed-Sternberg cells regulated through CD30, Blood. In press.Google Scholar
  222. 222.
    Debatin K-M, Goldmann CK, Bamford R, Waldmann TA, Krammer PH. Monoclonal-antibody-mediated apoptosis in adult T-cell leukaemia. Lancet 1990; 335:497.PubMedCrossRefGoogle Scholar
  223. 223.
    Kotani T, Aratake Y, Kondo S, Tamura K, Ohtaki S. Expression of functional Fas antigen on adult T-cell leukemia. Leuk Res 1994; 18:305.PubMedCrossRefGoogle Scholar
  224. 224.
    Kobayashi N, Hamamoto Y, Yamamoto N, Ishii A, Yonehara M, Yonehara S. Anti-Fas monoclonal antibody is cytocidal to human immunodeficiency virus-infected cells without augmenting viral replication. Proc Natl Acad Sci USA 1990; 87:9620.PubMedCrossRefGoogle Scholar
  225. 225.
    Debatin K-M, Fahrig-Faissner A, Enenkel-Stoodt S, Kreuz W, Benner A, Krammer PH. High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-in-fected children. Blood 1994; 83:3101.PubMedGoogle Scholar
  226. 226.
    Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267:1456.PubMedCrossRefGoogle Scholar
  227. 227.
    Schwarz H, Tuckwell J, Lotz M. A receptor induced by lymphocyte activation (ILA)—a new member of the human nervegrowth-factor tumor-necrosis-factor receptor family. Gene 1993; 134:295.PubMedCrossRefGoogle Scholar
  228. 228.
    Schwarz H, Valbracht J, Tuckwell J, Kempis J von, Lotz M. ILA, the human 4-IBB homologue, is inducible in lymphoid and other cell lineages. Blood 1995; 85:1043.PubMedGoogle Scholar
  229. 229.
    Pollok KE, Kim Y-J, Zhou Z, Hurtado J, Kim KK, Pickard RT, Kwon BS. Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol 1993; 150:771.PubMedGoogle Scholar
  230. 230.
    Pollok KE, Kim SH, Kwon BS. Regulation of 4-IBB expression by cell-cell interactions and the cytokines, interleukin-2 and interleukin-4. Eur J Immunol 1995; 25:488.PubMedCrossRefGoogle Scholar
  231. 231.
    Kim YJ, Pollok KE, Zhou Z, Shaw A, Bohlen JB, Fraser M, Kwon BS. Novel T cell antigen 4-1BB associates with the protein tyrosine kinase p561ck1. J Immunol 1993; 151:1255.PubMedGoogle Scholar
  232. 232.
    Chalupny NJ, Peach R, Hollenbaugh D, Ledbetter JA, Farr AG, Aruffo A. T-cell activation molecule 4-IBB binds to extracellular matrix proteins. Proc Natl Acad Sci USA 1992; 89:10360.PubMedCrossRefGoogle Scholar
  233. 233.
    DeBenedette MA, Chu NR, Pollok KE, Hurtado J, Wade WF, Kwon BS, Watts TH. Role of 4-1BB ligand in costimulation of T lymphocyte growth and its upregulation on M12 B lymphomas by cAMP. J Exp Med 1995; 181:985.PubMedCrossRefGoogle Scholar
  234. 234.
    Latza U, Dürkop H, Schnittger S, Ringeling J, Eitelbach F, Hummel M, Fonatsch C, Stein H. The human OX40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen. Eur J Immunol 1994; 24:677.PubMedCrossRefGoogle Scholar
  235. 235.
    Dürkop H, Latza U, Himmelreich P, Stein H, Expression of the human OX40 (hOX40) antigen in normal and neoplastic tissues. Br J Haematol 1995; 91:927.PubMedGoogle Scholar
  236. 236.
    Miura S, Ohtani K, Numata N, Niki M, Ohbo K, Ina Y, Gojobori T, Tanaka Y, Tozawa H, Nakamura M, Sugamura K. Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia, virus type I transactivator p40tax Mol Cell Biol 1991; 11:1313.PubMedGoogle Scholar
  237. 237.
    Tozawa H, Andoh S, Takayama Y, Tanaka Y, Lee B, Nakamura H, Hayami M, Hinuma Y, Species-dependent antigenicity of the 34-kDa glycoprotein found on the membrane of various primate lymphocytes transformed by human T-cell leukemia virus type-1 (HTLV-1) and simian T-cell leukemia virus (STLV-1) Int J Cancer 1988; 41:231.PubMedCrossRefGoogle Scholar
  238. 238.
    Weinberg AD, Bourdette DN, Sullivan TJ, Lemon M, Wallin JJ, Maziarz R, Davey M, Palida F, Godfrey W, Engleman E, Fulton RJ, Offner H, Vandenbark AA. Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nature Med 1996; 2:183.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • H. -J. Gruss
    • 1
  1. 1.Department of Internal Medicine IIIUniversity of Ulm Medical CenterUlmGermany

Personalised recommendations