Mathematical Programming

, Volume 73, Issue 2, pp 129–174 | Cite as

Shortest paths algorithms: Theory and experimental evaluation

  • Boris V. Cherkassky
  • Andrew V. Goldberg
  • Tomasz Radzik
Article

Abstract

We conduct an extensive computational study of shortest paths algorithms, including some very recent algorithms. We also suggest new algorithms motivated by the experimental results and prove interesting theoretical results suggested by the experimental data. Our computational study is based on several natural problem classes which identify strengths and weaknesses of various algorithms. These problem classes and algorithm implementations form an environment for testing the performance of shortest paths algorithms. The interaction between the experimental evaluation of algorithm behavior and the theoretical analysis of algorithm performance plays an important role in our research.

Keywords

Graph algorithms Network optimization Shortest paths Theory and experimental evaluation of algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.K. Ahuja, K. Mehlhorn, J.B. Orlin and R.E. Tarjan, “Faster algorithms for the shortest path problem”,J. Assoc. Comput. Mach. 37 (2) (1990) 213–223.MATHMathSciNetGoogle Scholar
  2. [2]
    R.E. Bellman, “On a routing problem”,Quart. Appl. Math. 16 (1958) 87–90.MathSciNetMATHGoogle Scholar
  3. [3]
    P. van Emde Boas, R. Kaas and E. Zijlstra, “Design and implementation of an efficient priority queue”,Math. Syst. Theory 10 (1977) 99–127.MATHCrossRefGoogle Scholar
  4. [4]
    T.H. Cormen, C.E. Leiserson and R.L. Rivest,Introduction to Algorithms (MIT Press, Cambridge, MA, 1990).MATHGoogle Scholar
  5. [5]
    E.V. Denardo and B.L. Fox, “Shortest-route methods: 1. Reaching, pruning, and buckets”,Operations Research 27 (1979) 161–186.MATHMathSciNetGoogle Scholar
  6. [6]
    R.B. Dial, “Algorithm 360: Shortest path forest with topological ordering”,Comm. ACM 12 (1969) 632–633.CrossRefGoogle Scholar
  7. [7]
    R.B. Dial, F. Glover, D. Karney and D. Klingman, “A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees”,Networks 9 (1979) 215–248.MATHMathSciNetGoogle Scholar
  8. [8]
    E.W. Dijkstra, “A note on two problems in connection with graphs”,Numer. Math. 1 (1959) 269–271.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    R.E. Erickson, C.L. Monma and A.F. Veinott Jr., “Send-and-split method for minimum-concave-cost network flows”,Math. of Oper. Res. 12 (1979) 634–664.MathSciNetGoogle Scholar
  10. [10]
    L.R. Ford Jr., and D.R. Fulkerson,Flows in Networks (Princeton Univ. Press, Princeton, NJ, 1962)MATHGoogle Scholar
  11. [11]
    M.L. Fredman and R.E. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms”,J. Assoc. Comput. Mach. 34 (1987) 596–615.MathSciNetGoogle Scholar
  12. [12]
    M.L. Fredman and D.E. Willard, “Trans-dichotomous algorithms for minimum spanning trees and shortest paths”,J. Comp. and Syst. Sci. 48 (1994) 533–551.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for network problems”,SIAM J. Comput. (1989) 1013–1036.Google Scholar
  14. [14]
    G. Gallo and S. Pallottino, “Shortest paths algorithms”,Annals of Oper. Res. 13 (1988) 3–79.MathSciNetGoogle Scholar
  15. [15]
    F. Glover, R. Glover and D. Klingman, “Computational study of an improved shortest path algorithm”,Networks 14 (1984) 25–37.Google Scholar
  16. [16]
    F. Glover, D. Klingman and N. Phillips, “A new polynomially bounded shortest paths algorithm”,Oper. Res. 33 (1985) 65–73.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    A.V. Goldberg, “Scaling algorithms for the shortest paths problem”, in:Proceedings 4th ACM-SIAM Symposium on Discrete Algorithms (1993) 222–231.Google Scholar
  18. [18]
    A.V. Goldberg and T. Radzik, “A heuristic improvement of the Bellman-Ford algorithm”,Applied Math. Let. 6 (1993) 3–6.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    M.S. Hung and J.J. Divoky, “A computational study of efficient shortest path algorithms”,Comput. Oper. Res. 15 (1988) 567–576.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    D.S. Johnson and C.C. McGeoch, eds.,Network Flows and Matching: First DIMACS Implementation Challenge (AMS, 1993).Google Scholar
  21. [21]
    A. Kershenbaum, “A note on finding shortest paths trees”,Networks 11 (1981) 399.MathSciNetGoogle Scholar
  22. [22]
    E.L. Lawler,Combinatorial Optimization: Networks and Matroids (Holt Reinhart, and Winston, New York 1976).MATHGoogle Scholar
  23. [23]
    B.Ju. Levit and B.N. Livshits,Neleneinye Setevye Transportnye Zadachi (Transport, Moscow, 1972), in Russian.Google Scholar
  24. [24]
    J-F. Mondou, T.G. Crainic and S. Nguyen, “Shortest path algorithms: A computational study with the C programming language”,Comput. Oper. Res. 18 (1991) 767–786.MATHCrossRefGoogle Scholar
  25. [25]
    E.F. Moore, “The shortest path through a maze”, in:Proceedings of the Int. Symp. on the Theory of Switching (Harvard University Press, 1959) 285–292.Google Scholar
  26. [26]
    S. Pallottino, “Shortest-path methods: Complexity, interrelations and new propositions”,Networks 14 (1984) 257–267.MATHGoogle Scholar
  27. [27]
    U. Pape, “Implementation and efficiency of Moore algorithms for the shortest root problem”,Math. Prog. 7 (1974) 212–222.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    D. Shier and C. Witzgall, “Properties of labeling methods for determining shortest paths trees”,J. Res. Natl. Bur. Stand. 86 (1981) 317–330.MATHMathSciNetGoogle Scholar
  29. [29]
    R.E. Tarjan,Data Structures and Network Algorithms (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983).Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1996

Authors and Affiliations

  • Boris V. Cherkassky
    • 1
  • Andrew V. Goldberg
    • 2
  • Tomasz Radzik
    • 3
  1. 1.Central Institute for Economics and MathematicsMoscowRussia
  2. 2.Computer Science DepartmentStanford UniversityStanfordUSA
  3. 3.Department of Computer ScienceKing's College LondonLondonUK

Personalised recommendations