Advertisement

Mathematical Programming

, Volume 37, Issue 1, pp 19–40 | Cite as

An exact penalty function for semi-infinite programming

  • Andrew R. Conn
  • Nicholas I. M. Gould
Article

Abstract

This paper introduces a global approach to the semi-infinite programming problem that is based upon a generalisation of the ℓ1 exact penalty function. The advantages are that the ensuing penalty function is exact and the penalties include all violations. The merit function requires integrals for the penalties, which provides a consistent model for the algorithm. The discretization is a result of the approximate quadrature rather than an a priori aspect of the model.

Key words

Semi-infinite programming exact ℓ1 penalty functions global algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.M. Apostol,Mathematical Analysis, 2nd edition (Addison-Wesley, Reading, MA., 1974).zbMATHGoogle Scholar
  2. D.P. Bertsekas,Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, 1982).zbMATHGoogle Scholar
  3. J.M. Borwein, “Semi-infinite programming duality: how special is it?,” in: A.V. Fiacco and K.O. Kortanek, eds.Semi-Infinite Programming and Applications, Lecture notes in economic and mathematical systems 215 (Springer-Verlag, New York 1983) pp. 10–36.Google Scholar
  4. T.F. Coleman and D.C. Sorensen, “A note on the computation of an orthonormal basis for the null space of a matrix,”Mathematical Programming 29 (1984) 234–242.zbMATHMathSciNetGoogle Scholar
  5. A.R. Conn and T. Pietrzykowski, “A penalty function method converging directly to a constrained optimum,”SIAM Journal on Numerical Analysis 14 (1977) 348–375.zbMATHCrossRefMathSciNetGoogle Scholar
  6. I.D. Coope and G.A. Watson, “A projected Lagrangian algorithm for semi-infinite programming,”Mathematical Programming 32 (1985) 337–356.zbMATHCrossRefMathSciNetGoogle Scholar
  7. J. Edwards,A Treatise on the Integral Calculus, with Applications, Examples and Problems, Volume 2 (Macmillan, London, 1922).Google Scholar
  8. I.I. Eremin and VI.D. Mazurov, “Iterationmethon for solving problems of convex programming,”Soviet Physics-Doklady 9 (1967) 757–759.MathSciNetGoogle Scholar
  9. A.V. Fiacco and K.O. Kortanek, eds.,Semi-Infinite Programming and Applications, Lecture notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983).zbMATHGoogle Scholar
  10. Yu. B. Germeyer, “Approximate reduction of the problem of determining a maximum by means of penalty functions,”USSR Computational Mathematics and Mathematical Physics 9 (1969) 325–328.CrossRefGoogle Scholar
  11. H. Gfrerer, J. Guddat, Hj Wacker and W. Zulehner, “Globalization of locally convergent algorithms for nonlinear optimization problems with constraints,” in: A.V. Fiacco and K.O. Kortanek, eds., Lecture notes in economic and mathematical system 215 (Springer-Verlag, New York, 1983) pp. 128–137.Google Scholar
  12. P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, New York, 1981).zbMATHGoogle Scholar
  13. S.-A. Gustafson, “A three-phase algorithm for semi-infinite programs”, in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-Infinite Programming and Applications, Lecture, notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983) pp. 138–157.Google Scholar
  14. R. Hettich, ed.,Semi-infinite Programming, Lecture notes in control and information sciences 15 (Springer-Verlag, New York, 1979).zbMATHGoogle Scholar
  15. R. Hettich and W. Van Honstede, “On quadratically convergent methods for semi-infinite programming,” in: R. Hettich, ed.,Semi-infinite Programming, Lecture notes in control and information science 15 (Springer-Verlag, New York, 1979) pp. 97–111.CrossRefGoogle Scholar
  16. T. Pietrzykowski, “An exact potential method for constrained maxima,”SIAM Journal of Numerical Analysis 6 (1969) 299–304.zbMATHCrossRefMathSciNetGoogle Scholar
  17. T. Pietrzykowski, “The potential method for conditional maxima in locally compact metric spaces,”Numerische Mathematik 14 (1970) 325–329.zbMATHCrossRefMathSciNetGoogle Scholar
  18. R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, N.J., 1970).zbMATHGoogle Scholar
  19. G.A. watson, “Globally convergent methods for semi-infinite programming,”Nordisk Tidskrift for Informationsbehandling (BIT) 21 (1981) 36–373.Google Scholar
  20. G.A. Watson, “Numerical experiments with globally convergent methods for semi-infinite programming problems,” in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-infinite Programming and Applications, Lecture notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983) pp. 193–205.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1987

Authors and Affiliations

  • Andrew R. Conn
    • 1
  • Nicholas I. M. Gould
    • 2
  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations