Advertisement

Qualitas Plantarum

, Volume 25, Issue 2, pp 107–169 | Cite as

Ein Beitrag zur Biogenese und Biochemie Antimikrobiell Wirkender Ätherischer Öle der Küchenzwiebel (Allium Cepa L.)

  • Angela Becker
  • Werner Schuphan
Article

Zusammenfassung

Die Synthese-und Abbauwege der ätherischen Öle der Küchenzwiebel werden refereirt. Hauptsächlich durch autoradiographische und histochemische Methoden lassen sich die ätherischen Zwiebelöle in den Bündelscheiden lokalisieren. Die Ontogenie der Zwiebel vom Embryo bis zur mehrblättrigen Keimpflanze wird in Hinblick auf die Entwicklung der ätherischen Ölzellen verfolgt; das ätherische Öl liegt von Anfang an in den Zellen der Bündelscheiden vor. Die Produktion des die ätherischen Öle freisetzenden Enzyms Alliinase dagegen scheint eine allgemeine Leistung der Zellen der Küchenzwiebel zu sein.

Abstract

The pathways of synthesis and break down of essential onion oils as found by other investigators are described. Own research work meanly by autoradiographical and histochemical methods shows that the essential oils are localized in the bundle sheaths. The ontogenesis of the onion from an embryo to a two-leaved seedling is demonstrated with special regard to the development of essential oil containing cells. From the beginning after germination the essential oils are localized in the bundle sheaths. The production of the enzyme alliinase which releases the essential oils from their precursors takes place in all the cells of the onion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abdou, I., Abou-Zeid, A.A., El-Sherbeeny, M.R. & Abu-El-Gheats, Z.M. (1972). Antimicrobial activity ofAllium sativum, Allium cepa, Raphanus sativus, Capsicum frutescens, Eruca sativa, Allium kurrat on bacteria.Qual. Plant. Mater. Veg. 22:29–35.CrossRefGoogle Scholar
  2. Amonkar, S.V. & Banerji, A. (1971). Isolation and characterization of larvicidal principle of garlic.Science 174:1343–1344.CrossRefGoogle Scholar
  3. Angell, H.R., Walker, J.C. & Link, K.P. (1930). The relation of protocatechuic acid to disease resistance in the onion.Phytopathology 20:431–438.Google Scholar
  4. Backer, H.J. & Kloosterziel, K. (1954). Esters thiolsulfiniques.Rec. Trav. Chim. 73:129–139.CrossRefGoogle Scholar
  5. Berker-Dillingen, J. (1950). Handbuch des gesamten Pflanzenbaues. Berlin-Hamburg, Paul Parey. 787–801.Google Scholar
  6. Benett, E. (1945). A note on the presence of pyruvic acid in Ebenezer onions.Plant. Physiol. 20:461–463.Google Scholar
  7. Bernhard, R.A. (1968). Comparative distribution of volatile aliphatic disulfides derived from fresh and dehydrated onions.J. Food Sci. 33:298–304.CrossRefGoogle Scholar
  8. Boelens, H. & Brandsma, L. (1972). Formation of dialkylthiophenes by thermolysis of di-(1-alkenyl)-disulfides and alkyl-1-propenyl-disulfides.Rec. Trav. Chim. 91:141–145.CrossRefGoogle Scholar
  9. Boelens, M., de Valois, J.P., Wobben, H.J. & van der Gen, A. (1971). Volatile flavor compounds from onion.J. Agr. Food Chem. 19:984–991.CrossRefGoogle Scholar
  10. Boyd, G.A. (1955). Autoradiography in biology and medicine. New York, Academic Press.Google Scholar
  11. Brodnitz, M.H. & Pascale, J.V. (1971). Thiopropanal-S-oxyde, a lachrymatory factor in onion.J. Agr. Food Chem. 19:269–272.CrossRefGoogle Scholar
  12. Brodnitz, M.H. & Pollock, C.L. (1970). Gas-chromatographic analysis of distilled onion oil. Fd Technol. (Champaign) 24: 78–80.Google Scholar
  13. Brown, W. (1922). Studies in the physiology of parasitism. IX The effect on the germination of fungal spores of volatile substances arising from plant tissueAnn. Bot. 36:285–300.Google Scholar
  14. Carson, J.F., Lundin, R.E. & Lukes, T.M. (1966). The configuration of (+)-S-1-propenyl-L-cysteine-S-oxide from Allium cepa.J. Org. Chem. 31:1634–1635.Google Scholar
  15. Carson, J.F. & Wong, F.F. (1961). Isolation of (+)S-methyl-L-cysteine sulfoxide and (+)-S-n-propyl-L—cysteine sulfoxide from onions as their N-2,4-dinitrophenyl derivaties.J. Org. Chem. 26:4997–5000.Google Scholar
  16. Cavallito, C.J. & Bailey, J.H. (1944). Allicin, the antibacterial principle of Allium sativum. I Isolation, physical properties and antibacterial action.J. Am. Chem. Soc. 66:1950–1952.CrossRefGoogle Scholar
  17. Cavallito, C.J., Buck, J.S. & Suter, S.M. (1944), Allicin, the antibacterial principle of Allium sativum. II Determination of the chemical structure.J. Am. Chem. Soc. 66:1952–1954.CrossRefGoogle Scholar
  18. Däbritz, E. & Virtanen, A.I. (1965). S-Vinylcystein-S-oxid ein Homologes zur Vorstufe des tränentreibenden Substanz der Zwiebel.Chem. Ber. 98:781–788.Google Scholar
  19. Dioskurides, P. (um 50 n. Chr.) Materia medica. 2. Buch, Kap. 178–182.Google Scholar
  20. Ettala, T. & Virtanen, A.I. (1962). On the labelling of sulphur containing amino acids and γ-glytamylpeptides after injection of labelled suphate into onion (Allium cepa).Acta Chem. Scand. 16:2061–2063.Google Scholar
  21. Freeman, G.G. & Mossadeghi, N. (1970). Effect of sulphate nutrition on flavor compounds of onion (Allium cepa).J. Sci. Fd Agr. 21:610–615.CrossRefGoogle Scholar
  22. Freeman, G.G., Whenham, R.J., Mackenzie, I.A. & Davey, M.R. (1974). Flavour components in tissue cultures of onion (Allium cepa L.).Plant Science letters 3:121–125.CrossRefGoogle Scholar
  23. Fuchs, L. (1543). New Kreuterbuch. Basel. (zitiert in Kröber, L. (1935) Das neuzeitliche Kräuterbuch. Stuttgart-Leipzig, Hippokrates-Verlag. 203–206.Google Scholar
  24. Fujiwara, M., Yoshimura, M. & Tsuno, S. (1955). Allithiamine, a newly found derivative of vitamin B1. III On the alliin homologs in the plants of the allium species.J. Biochem. Tokyo 42:591–601.Google Scholar
  25. Fuller, J.E. & Higgings, E.R. (1940). Onion juice and bacterial growth.Food Research 15:503–507.Google Scholar
  26. Gerlach, D. (1969). Botanische Mikrotechnik. Stuttgart, Thieme.269.Google Scholar
  27. Geßner, O. (1953). Die Gift- und Arzneipflanzen Mitteleuropas. Heidelberg, Carl Winter. 484–486.Google Scholar
  28. Granroth, B. (1970). Biosynthesis and decomposition of cysteine derivatives in onion and other Allium species.Ann. Acad. Sci. Fenn. Ser. A 2 No. 154.Google Scholar
  29. Granroth, B. & Virtanen, A.J. (1967). S-2-Carboxypropylcysteine and its sulfoxide as precursors in the biosynthesis of cycloalliin.Acta Chem. Scand. 21:1654–1656.Google Scholar
  30. Gupta, J.C. & Viswanathan, R. (1955). In vitro studies of antitubercular substances from Allium species. Part I.A schoenoprasum. Part II.A. cepa.Antibiotics & Chemotherapy 5:18–21.Google Scholar
  31. Hagenow, G. (1974). Die Bedeutung der Küchenzwiebel (Allium cepa L.) als Nahrung und Heilmittel im Altertum. Erfahrung und Aberglaube.Qual. Plant.—Pl. Fds Nutr. 24:163–173.CrossRefGoogle Scholar
  32. Hatfield, W.C., Walker, J.C. & Owen, J.H. (1948). Antibiotic substances in onion in relation to disease resistance.Journ. Agr. Res. 77:115–135.Google Scholar
  33. Hanstein, J. (1859). Ein noch nicht bekanntes System schlauchförmiger Gefäße im Parenchym der Blätter und des Stengels vieler Monocotyledonen.Monatsber. Preuß. Akad. Wiss. Berlin 1859 (Nov.)705–713.Google Scholar
  34. Helm, J. (1956). Die zu Würz- und Speisezwecken kultivierten Arten der Gattung Allium L.Die Kulturpflanze 4:130–180.CrossRefGoogle Scholar
  35. Hildegard von Bingen (1098–1147) Naturkunde. Salburg, Otto Müller (1959) 33–34.Google Scholar
  36. Hoffman, C.A. (1933). Developmental morphology ofAllium cepa.Bot. Gaz. 95:279–299.CrossRefGoogle Scholar
  37. Huddleson, W.C., Dufrain, F., Barrons, K.C. & Giefel, M. (1944). Antibacterial substances in plants.Journ. Amer. Vet. Med. Assoc. 105:394–397.Google Scholar
  38. Hulpke, H. (1969). Beiträge zum Metabolismus des Pestizids Aldrin in Nahrungspflanzen. 1. Mitteilung: Saatgutinkrustierung von Möhren und Zwiebeln mit14C-Aldrin.Qual. Plant. Mater. Veg. 18:331–348.CrossRefGoogle Scholar
  39. Johnson, M.B. & Vaughn, R.H. (1969). Death of Salmonella typhimurium and Escherichia coli in the presence of freshly dehydrated garlic and onion.Appl. Microbiol. 17:903–905.Google Scholar
  40. Kaiser, R. (1960). Chromatographie in der Gasphase. I. Mannheim, Bibliographisches Institut. Hochschultaschenbucher 22/22a, 187.Google Scholar
  41. Karlson, P. (1967). Kurzes Lehrbuch der Biochemie. Stuttgart, Thieme. 281, 284.Google Scholar
  42. Kimball, E.F. (1972). Biologie der Zelle. Stuttgart, Fischer, 55–56.Google Scholar
  43. Kohman, E.F. (1947). The chemical components of onion vapors responsible for wound-healing qualities.Science 106:625–627.CrossRefGoogle Scholar
  44. Kovalenok, A. (1943/44). Action of phytoncides upon infusoria.Amer. Rev. Soviet. Med. 1:239–241.Google Scholar
  45. Kupiecki, F.P. & Virtanen, A.I. (1960). Cleavage of alkylcysteine sulfoxides by an enzyme in onion (Allium cepa).Acta Chem. Scand. 14:1913–1918.Google Scholar
  46. Link, K.P., Angell, H.R. & Walker, J.C. (1929). The isolation of protocatechuic acid in pigmented onion scales and its significance in relation to disease resistance in the onion.J. Biol. Chem. 84:719–725.Google Scholar
  47. Link, K.P. & Walker, J.C. (1933). The isolation of catechole from pigmented onion scales and its sifnificance in relation to disease resistance in onions.J. Biol. Chem. 100:379–383.Google Scholar
  48. Lovell, T.H. (1937). Bactericidal effects of onion vapor.Food Research 2:435–438.Google Scholar
  49. Lukes, I.M. (1971). Thin-layer chromatography of cysteine derivatives of onion flavor compounds and the lachrymatory factor.J. Fd. Sci. 36:662–664.CrossRefGoogle Scholar
  50. Matikkala, E.F. & Virtanen, A.I. (1965a). γ-Glutamylpeptidase in germinating seeds of chive (Allium schoenoprasum).Acta Chem. Scand. 19:1258–1261.Google Scholar
  51. Matikkala, E.J. & Virtanen, A.I. (1965b). γ-Glutamylpeptidase in sprouting onion bulbs.Acta Chem. Scand. 19:1261–1262.Google Scholar
  52. Matthiolus, P.A. (1563). New Kreuterbuch. Prag. (zitiert in: Kröber, L. (1935) Das neuzeitliche Kräuterbuch. Stuttgart-Leipzig, Hippokrates-Verlag. 203–206.Google Scholar
  53. Mazelis, M. & Crews, L. (1968). Purification of alliin lyase of garlic (Allium sativum L.).Biochem. J. 108:725–730.Google Scholar
  54. Merck, E. Anfärbereagentien für die Dünnschicht- und Papierchromatographie.Google Scholar
  55. Morgan, E.J. (1946). Pyruvic acid in the juice of onion.Nature 157:512.Google Scholar
  56. Niegisch, W.D. & Stahl, W.H. (1956). The onion: Gaseous emanation products.Food Research 21:657–665.Google Scholar
  57. Palmer, K.J. & Lee, K.S. (1966). The structure of cycloalliin chloride monohydrate.Acta Chryst. 20:790–795.CrossRefGoogle Scholar
  58. Pasteur, L. (1858). Mémoire sur la fermentation appelée lactique. (Nachdruck in: Pasteur-Valéry-Radot (1922). Oeuvres de Pasteur II. Fermentations et générations dites spontanées. Paris, Masson. 3–17).Google Scholar
  59. Platenius, H. & Knott, J.E. (1935). The pungency of the onion bulb as influenced by the stage of development of the plant.Proc. Amer. Soc. Hort. Sci. 33:481–483.Google Scholar
  60. Plinius, C. (23–79). Historia naturalis. Buch 19, Kap. 5–6. Buch 20, Kap. 5–6.Google Scholar
  61. Prugar, J., Nováková, J., Veselá, J. & Troncková, E. (1968). Obsah silicnatych létek v odrudách cvétového sortimentu cibule kuchynské.Rostlinna vyroba 14:447–456.Google Scholar
  62. Rendle, A.B. (1889). On the vesicular vessels of the onion.Ann. Bot. 3:167–177.Google Scholar
  63. Renis, H.E. & Henze, R. E. (1958). Cysteine derivatives in mature onion bulbs.Food Research 23:345–350.Google Scholar
  64. Rudat, K.D. (1957). Uber antibiotisch wirksame Inhaltsstoffe höherer Pflanzen, insbesondere der Knoblauchsrauke (Alliaria officinalis) und anderer Lauchgewächse gegenüber Bacterium Pyocyaneum.J. Hyg. Epidem. Microbiol. Immunol. 1:213–224.Google Scholar
  65. Rudat, K.D. (1969). Vergleichende Untersuchungen über die antibakterielle Wirksamkeit verschiedener lauchgewächse und Cruciferenarten.Qual. Plant. Mater. Veg. 18:29–43.CrossRefGoogle Scholar
  66. Saghir, A. R., Mann, L.K., Bernhard, R.A. & Jacobsen, J.V. (1964). Determination of aliphatic mono- und disulfides in Allium by gaschromatography and their distribution in the common food species.Proc. Am. Chem. Soc. 84:386–398.Google Scholar
  67. Saghir, A.R., Mann, L.K. & Yamaguchi, M. (1965). Composition of volatiles as related to habitat, stage of growth and plant part.Plant physiology 4:681–685.CrossRefGoogle Scholar
  68. Schuphan, W. & Schwerdtfeger, E. (1971). Arginin als Stickstoffreserve bei der Küchenzwiebel (Allium cepa).Ernährungsumschau 18:288.Google Scholar
  69. Schuphan, W. & Schwerdtfeger, E. (1972). Entwicklung vonAllium cepa L. unter besonderer Berücksichtigung des Arginins als N-Pool.Qual. Plant. Mater Veg. 21:141–145.CrossRefGoogle Scholar
  70. Schwimmer, S. (1963). Kinetics of L-cysteine sulfoxide lyase of onions.Federation Proceed. 22:534 (Abstr.2233).Google Scholar
  71. Schwimmer, S. (1964). L-Cysteine sulfoxide lyase competition between enzyme and substrate for added pyridoxal phosphate.Biochem. Biophys. Acta 81:377–385.Google Scholar
  72. Schwimmer, S. (1968). Enzymatic conversion of (+)-S-1-propenyl-L-cysteine-S-oxide to the bitter and odor-bearing components of onion.Phytochemistry 7:401–404.CrossRefGoogle Scholar
  73. Schwimmer, S. (1971). S-Alkyl-L-cysteine sulfoxide lyase (Allium cepa (onion)). Methods in Enzymology 17B 475–478.Google Scholar
  74. Schwimmer, S., Carson, J.F., Makower, R.U., Mazelis, M. & Wong, F.F. (1960). Demonstration of alliinase in a protein preparation from onion.Experientia 16:449.CrossRefGoogle Scholar
  75. Schwimmer, S. & Guadagni, D.G. (1962). Relation between olfactory threshold concentration and pyruvic acid content in onion.J. Fd Sci. 27:94–97.CrossRefGoogle Scholar
  76. Schwimmer, S. & Mazelis, M. (1963). Characterization of alliinase ofAllium cepa(onion).Arch. Biochem. Biophys. 100:66–73.CrossRefGoogle Scholar
  77. Schwimmer, S., Ryan, C.A. & Wong, F.F. (1964). Specifity of L-cysteine sulfoxide lyase and partially competitive inhibition by S-alkyl-L-cysteines.J. Biol. Chern. 239:777–782.Google Scholar
  78. Schwimmer, S., & Weston, W.J. (1961). Onion flavor and odor. Enzymatic development of pyruvic acid in onion as a measure of pungency.J. Agr. Food Chem. 9:301–304.CrossRefGoogle Scholar
  79. Semmler, F.W. (1892). Das ätherische Öl der Küchenzwiebel.Arch. Pharm. Bull. 230:443–448.CrossRefGoogle Scholar
  80. Shannon, S., Yamaguchi, M. & Howard, F.D. (1967). Precursors involved in the formation of pink pigments in onion purees.J. Agr. Food Chem. 15:423–426.CrossRefGoogle Scholar
  81. Small, L.V.D., Bailey, J.H. & Cavallito, C.J. (1947). Alkylthiolsulfinates.J. Am. Chem. Soc. 69:1710–1713.CrossRefGoogle Scholar
  82. Small, L.V.D., Bailey, J.H. & Cavallito, C.J. (1949). Comparison of the properties of thiolsulfonates and thiolsulfinates.J. Am. Chem. Soc. 71:3565–3566.CrossRefGoogle Scholar
  83. Spare, C.G. & Virtanen, A.L. (1961). The volatile carbonyls and alcohols in the flavor substances of onion (Allium cepa).Acta Chem. Scand. 15:1280–1284.Google Scholar
  84. Spare, C.G. & Virtanen, A.L. (1963). On the lachrymatory factor in onion (Allium cepa) vapors and its precursor.Acta Chem. Scand. 17:641–650.Google Scholar
  85. Sperlich, A. (1939). Das trophische Parenchym. B. Exkretionsgewebe. IV Fermentbehälter. In Linsbauer, K. Handbuch der Pflanzenanatomie. Berlin, Gebrüder Bornträger. 125–128.Google Scholar
  86. Stoll, A. & Seebeck, E. (1948). Über Alliin, die genuine Muttersubstanz des Knoblauchöls. 1. Mitteilung.Helv. Chim. Acta 31:189–210.CrossRefGoogle Scholar
  87. Stoll, A. & Seebeck, E. (1949a). Uber den enzymatischen Abbau des Alliins und die Eigenschaften der Alliinase.Helv. Chim. Acta 32:197–205.CrossRefGoogle Scholar
  88. Stoll, A. & Seebeck, E. (1949b). Uber die Spezifität der Alliinase und die Synthesen mehrerer dem Alliin verwandter Verbindungen.Helv. Chim. Acta 32:866–876.CrossRefGoogle Scholar
  89. Strasburger, E., Noll, F., Schenk, H. & Schimper, A.F.W. (1958). Lehrbuch der Botanik. Stuttgart, Gustav Fischer Verlag. 89Google Scholar
  90. Sugii, M., Suzuki, T., Kakimoto, T. & Kato, J. (1964). Sulfur containing amino acids and related compounds in garlic. I. Assimilation of sulfate35-S in garlic.Bull. Inst. Chem. Res. Kyoto Univ. 42:246–251 (C. A. 62:5582g (1965)).Google Scholar
  91. Suzuki, T., Sugii, M. & Kakimoto, T. (1962). Metabolic incorporation of L-valine-C14 into S-2carboxypropylglutathione and S-2-carboxypropylcysteine in garlic.Chem. Pharm. Bull. (Tokyo) 10:328–331.Google Scholar
  92. Toennies, G. & Kolb, J.J. (1951). Technique and reagents for paper chromatography.Anal. Chem. 23:823–826.CrossRefGoogle Scholar
  93. Tokin, B. (1943/44). Effects of phytoncides upon protozoa.Amer. Rev. Soviet. Med. 1:237–239.Google Scholar
  94. Tokin, B.P. & Baranenkova, A.S. (1930). Uber die Atheröle und die Zellteilungen.Chem. Zentr. 50:633–636.Google Scholar
  95. Vilkki, P. (1954). Chromatographic studies in the formation of pyruvic acid in onion juice.Suomen Kem. B27:21–24.Google Scholar
  96. Virtanen, A.I. (1962). Organische Schwefelverbindungen in Gemüse- und Futterpflanzen.Angew. Chem. 74:374–382.Google Scholar
  97. Virtanen, A.I. (1969). Antimikrobielle und antithyreoide Stoffe in Pflanzen.Qual. Plant. Mater. Veg. 18:8–28.CrossRefGoogle Scholar
  98. Virtanen, A.I. & Matikkala, E.J. (1959). The isolation of S-methylcysteine sulfoxide and S-propylcysteine sulfoxide from onion (Allim cepa) and the antibiotic activity of crushed onion.Acta Chem. Scand. 13:1898–1900.CrossRefGoogle Scholar
  99. Virtanen, A.I. & Matikkala, E.J. (1961). Proofs of the presence of γ-glumatyl-S(1-propenyl)-cysteine sulfoxide and cycloalliin as original compounds in onion (Allium cepa).Suomen Kem. B34:114.Google Scholar
  100. Virtanen, A.I. & Spare, C.-G. (1961). Isolation of the precursor of the lachrymatory factor in onion.Suomen Kem. B34:72.Google Scholar
  101. Virtanen, A.I. E Spare, C.-G. (1963). On the enzymic splitting of S-(1-propenyl)-cysteine sulfoxide and the formation of the lachrymatory factor.Suomen Kem. B35:28.Google Scholar
  102. Vogel, H. (1943). Chemie und Technik der Vitamine. Stuttgart, Ferdinand Enke.177.Google Scholar
  103. Walker, J.C. (1921). Onion smudge.Journ. Agr. Res. 20:685–721.Google Scholar
  104. Walker, J.C. (1923). Disease resistance to onion smudge.Journ. Agr. Res. 24:1019–1041.Google Scholar
  105. Walker, J.C., Lindegren, C.C. & Bachmann, F.M. (1925). Further studies to the toxicity of juice extracted from succulent onion scales.Journ. Agr. Res. 30:175–187.Google Scholar
  106. Walker, J.C., Link, K.P. & Angell, H.R. (1929). Chemical aspects of diseases resistance in the onion.Natl. Accad. Sci. Proc. 15:845–850.CrossRefGoogle Scholar
  107. Wilkens, F.W. (1962). The isolation and identification of the lachrymogenic compound of onion.Diss. Abstr. 22:3978 order No.62-986.Google Scholar
  108. Wilkens, W.F. (1964). Isolation and identification of the lachrymogenic compound of onion.Mem. Cornell Agric. Exp. Stat. 385.Google Scholar
  109. Winckelmann, W. (1951). Die Wirkstoffe unserer Heilpflanzen. Freiburg, Otto Walter Verlag. 164–166.Google Scholar

Copyright information

© Dr. W. Junk b.v Publishers 1975

Authors and Affiliations

  • Angela Becker
    • 1
  • Werner Schuphan
    • 1
  1. 1.Geisenheim/Rheingau

Personalised recommendations