Advertisement

Metallurgical and Materials Transactions A

, Volume 37, Issue 8, pp 2525–2538 | Cite as

Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 Wt Pct Si and Zn 27 Wt Pct Al alloys

  • Wislei R. Osorio
  • Pedro R. Goulart
  • Amauri Garcia
  • Givanildo A. Santos
  • Carlos Moura Neto
Article

Abstract

It has been reported that the mechanical properties and the corrosion resistance (CR) of metallic alloys depend strongly on the solidification microstructural arrangement. The correlation of corrosion behavior and mechanical properties with microstructure parameters can be very useful for planning solidification conditions in order to achieve a desired level of final properties. The aim of the present work is to investigate the influence of heat-transfer solidification variables on the microstructural array of both Al 9 wt pct Si and Zn 27 wt pct Al alloy castings and to develop correlations between the as-cast dendritic microstructure, CR, and tensile mechanical properties. Experimental results include transient metal/mold heat-transfer coefficient (h i), secondary dendrite arm spacing (λ2), corrosion potential (E Corr), corrosion rate (i Corr), polarization resistance (R 1), capacitances values (Z CPE), ultimate tensile strength (UTS, σ u ), yield strength (YS, σ y ), and elongation. It is shown that σ U decreases with increasing λ2 while the CR increases with increasing λ2, for both alloys experimentally examined. A combined plot of CR and σ U as a function of λ2 is proposed as a way to determine an optimum range of secondary dendrite arm spacing that provides good balance between both properties.

Keywords

Material Transaction Ultimate Tensile Strength Electrochemical Impedance Spectroscopy Corrosion Resistance Saturated Calomel Reference Elec 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.G. Shabestari and H. Moemeni:J. Mater. Proc. Technol., 2004, vol. 153 (4), pp. 193–98.CrossRefGoogle Scholar
  2. 2.
    E.L. Rooy:Metals Handbook, vol. 15,Castings, ASM INTERNATIONAL, Metals Park, OH, 1988, vol. 15, pp. 743–70.Google Scholar
  3. 3.
    J. Birch:Mater. Des., 1990, vol. 11, pp. 83–87.Google Scholar
  4. 4.
    Ç. Fatih and S. Kurnaz:Mater. Des., 2005, vol. 25, pp. 479–85.Google Scholar
  5. 5.
    M. Durman:Z. Metallkd., 1998, vol. 89, pp. 417–23.Google Scholar
  6. 6.
    N.J. Petch:J. Iron Steel Inst., 1953, vol. 174, pp. 25–31.Google Scholar
  7. 7.
    A. Lasalmonie and J. Strudel:J. Mater. Sci., 1986, vol. 21, pp. 1837–52.CrossRefGoogle Scholar
  8. 8.
    K.J. Kurzydlowski, B. Ralph, J.J. Bucki, and A. Garbacz:Mater. Sci. Eng., A, 1996, vol. 205, pp. 127–32.CrossRefGoogle Scholar
  9. 9.
    D. Dubé, A. Couture, Y. Carbonneaut, M. Fiset, R. Angers, and R. Tremblay:Int. J. Cast Met. Res., 1998, vol. 11, pp. 139–44.Google Scholar
  10. 10.
    P. Donelan:Mater. Sci. Technol., 2000, vol. 16, pp. 261–69.Google Scholar
  11. 11.
    W.R. Osório and A. Garcia:Mater. Sci. Eng. A, 2002, vol. 325, pp. 103–11.CrossRefGoogle Scholar
  12. 12.
    W.R. Osório, C.A. Santos, J.M.V. Quaresma, and A. Garcia:J. Mater. Proc. Technol., 2003, vol. 143, pp. 703–09.CrossRefGoogle Scholar
  13. 13.
    J.M. Quaresma, C.A. Santos, and A. Garcia:Metall. Mater. Trans. A, 2000, vol. 31A, pp. 3167–78.Google Scholar
  14. 14.
    W.R. Osório, C.M.A. Freire, and A. Garcia:J. Alloys Compounds, 2005, vol. 397, pp. 179–91.CrossRefGoogle Scholar
  15. 15.
    W.R. Osório, J.E. Spinelli, N. Cheung, and A. Garcia:Mater. Sci. Eng., A, 2006, vol. 420, pp. 179–86.CrossRefGoogle Scholar
  16. 16.
    W.R. Osório, C.M.A. Freire, and A. Garcia:J. Mater. Sci., 2005, vol. 40, pp. 4493–99.CrossRefGoogle Scholar
  17. 17.
    G. Song, A. Atrens, and M. Dareusch:Corr. Sci., 1999, vol. 41, pp. 249–73.CrossRefGoogle Scholar
  18. 18.
    G. Song, A.L. Bowles, and D.H.St. John:Mater. Sci. Eng., A, 2004, vol. 366, pp. 74–86.CrossRefGoogle Scholar
  19. 19.
    B. Yu and J. Uan:Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2245–52.Google Scholar
  20. 20.
    W.R. Osório, C.M.A. Freire, and A. Garcia:Mater. Sci. Eng., A, 2005, vol. 402, pp. 22–32.CrossRefGoogle Scholar
  21. 21.
    W.R. Osório, C.M.A. Freire, and A. Garcia:Mater. Sci. Eng., A, 2005, vol. Extr., pp. 176–80.Google Scholar
  22. 22.
    C.A. Siqueira, N. Cheung, and A. Garcia:Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2107–18.Google Scholar
  23. 23.
    O.L. Rocha, C.A. Siqueira, and A. Garcia:Metall. Mater. Trans. A, 2003, vol. 34A, pp. 995–1006.Google Scholar
  24. 24.
    A. Garcia, T.W. Clyne, and M. Prates:Metall. Trans. B, 1979, vol. 10B, pp. 85–9.Google Scholar
  25. 25.
    I.L. Ferreira, C.A. Santos, V.R. Voller, and A. Garcia:Metall. Mater. Trans. B, 2004, vol. 35B, pp. 285–97.Google Scholar
  26. 26.
    F. Sá, O.L. Rocha, C.A. Siqueira, and A. Garcia:Mater. Sci. Eng., A, 2004, vol. 373, pp. 131–38.CrossRefGoogle Scholar
  27. 27.
    M.D. Peres, C.A. Siqueira, and A. Garcia:J. Alloys Compounds, 2004, vol. 381, pp. 168–81.CrossRefGoogle Scholar
  28. 28.
    J.E. Spinelli, M.D. Peres, and A. Garcia:J. Alloys Compounds, 2005, vol. 403, pp. 228–38.CrossRefGoogle Scholar
  29. 29.
    N. Tunca and R.W. Smith:J. Mater. Sci., 1988, vol. 23, pp. 111–20.CrossRefGoogle Scholar
  30. 30.
    C.A. Gandin:Acta Mater., 2000, vol. 48, pp. 2483–501.CrossRefGoogle Scholar
  31. 31.
    C.A. Siqueira, N. Cheung, and A. Garcia:J. Alloys Compounds, 2003, vol. 351, pp. 126–34.CrossRefGoogle Scholar
  32. 32.
    Standard Recommended Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Tests, ASTM G3, ASTM, Philadelphia, PA, 1989.Google Scholar
  33. 33.
    M.C. Flemings:Solidification Processing, McGraw Hill, Inc., New York, NY, 1974, pp. 148–50.Google Scholar
  34. 34.
    W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications Ltd., Aedermannsdorf, Switzerland, 1986, pp. 73–77.Google Scholar
  35. 35.
    T.Z. Kattamis, J.C. Coughlin, and M.C. Flemings:Trans. TMS-AIME, 1967, vol. 239, pp. 1504–11.Google Scholar
  36. 36.
    M. Chen and T.Z. Kattamis:Mater. Sci. Eng., A, 1998, vol. 247, pp. 239–47.CrossRefGoogle Scholar
  37. 37.
    D.H. Kirkwood:Mater. Sci. Eng., A, 1985, vol. 73, pp. L1-L4.CrossRefGoogle Scholar
  38. 38.
    A. Mortensen:Metall. Mater. Trans. B, 1996, vol. 27B, pp. 101–13.Google Scholar
  39. 39.
    D. Bouchard and J.S. Kirkaldy:Metall. Mater. Trans. B, 1997, vol. 28B, pp. 651–63.Google Scholar
  40. 40.
    J. Campbell:Castings, Butterworth-Heinemann, Oxford, United Kingdom, 1991, pp. 264–67.Google Scholar
  41. 41.
    M. Kliskic, J. Radosevic, S. Gudic, and M. Smith:Electrochem. Acta, 1998, vol. 43, pp. 3241–55.CrossRefGoogle Scholar
  42. 42.
    S. Gudic, J. Radosevic, and M. Kliskic:Electrochem. Acta, 2002, vol. 47, pp. 3009–16.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Wislei R. Osorio
    • 1
  • Pedro R. Goulart
    • 1
  • Amauri Garcia
    • 1
  • Givanildo A. Santos
    • 2
  • Carlos Moura Neto
    • 2
  1. 1.the Department of Materials EngineeringState University of Campinas, UNICAMPCampinas, SPBrazil
  2. 2.the Mechanics and Aeronautics Engineering DivisionAeronautical Insitute of Technology, CTASão José dos Campos, SPBrazil

Personalised recommendations