Metallurgical and Materials Transactions A

, Volume 37, Issue 11, pp 3323–3336 | Cite as

Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing

  • Z. Y. Ma
  • S. R. Sharma
  • R. S. Mishra


Friction stir processing (FSP) has been applied to cast aluminum alloy A356 plates to enhance the mechanical properties through microstructural refinement and homogenization. The effect of tool geometry and FSP parameters on resultant microstructure and mechanical properties was investigated. The FSP broke up and dispersed the coarse acicular Si particles creating a uniform distribution of Si particles in the aluminum matrix with significant microstructural refinement. Further, FSP healed the casting porosity. These microstructural changes led to a significant improvement in both strength and ductility. Higher tool rotation rate was the most effective parameter to refine coarse Si particles, heal the casting porosity, and consequently increase strength. The effect of tool geometry was complicated and no systematic trend was observed. For a standard pin design, maximum strength was achieved at a tool rotation rate of 900 rpm and traverse speed of 203 mm/min. Post-FSP aging increased strength for materials processed at higher tool rotation rates of 700 to 1100 rpm, but exerted only a marginal effect on samples prepared at the lower rotation rate of 300 rpm. Two-pass FSP with 100 pct overlapping passes resulted in higher strength for both as-FSP and post-FSP aged conditions.


Material Transaction Friction Stir Welding Friction Stir Processing Traverse Speed Tool Rotation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.L. Zhang and L. Zheng:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3983–91.CrossRefGoogle Scholar
  2. 2.
    T. Din and J. Campbell:Mater. Sci. Technol., 1996, vol. 12, pp. 644–50.Google Scholar
  3. 3.
    Y.B. Yu, P.Y. Song, S.S. Kim, and J.H. Lee:Scripta Mater., 1999, vol. 41, pp. 767–71.CrossRefGoogle Scholar
  4. 4.
    Aluminum Casting Technology, 2nd ed., D.L. Zalensas, ed., AFS Inc., Schaumburg, IL, 1993, p. 77.Google Scholar
  5. 5.
    S. Kumai, J. Hu, Y. Higo, and S. Nunomura:Acta Mater., 1996, vol. 44, pp. 2249–57.CrossRefGoogle Scholar
  6. 6.
    B. Zhang, D.R. Poirier, and W. Chen:Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2659–66.Google Scholar
  7. 7.
    M.E. Seniw, J.G. Conley, and M.E. Fine:Mater. Sci. Eng., A, 2000, vol. A285, pp. 43–48.Google Scholar
  8. 8.
    G. Atxaga, A. Pelayo, and A.M. Irisarri:Mater. Sci. Technol., 2001, vol. 17, pp. 446–50.CrossRefGoogle Scholar
  9. 9.
    K.T. Kashyap, S. Murrall, K.S. Raman, and K.S.S. Murthy:Mater. Sci. Technol., 1993, vol. 9, pp. 189–203.Google Scholar
  10. 10.
    L. Wang and S. Shivkumar:Z. Metallkd., 1995, vol. 86, pp. 441–45.Google Scholar
  11. 11.
    T.J. Hurley and R.G. Atkinson:Trans. AFS, 1985, vol. 91, pp. 291–96.Google Scholar
  12. 12.
    D. Argo and J.E. Gruzleski:Trans. AFS, 1988, vol. 16, p. 65.Google Scholar
  13. 13.
    J. Wang, S. He, B. Sun, K. Li, D. Shu, and Y. Zhou:Mater. Sci. Eng., A, 2002, vol. A338, pp. 101–07.Google Scholar
  14. 14.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Great Britain Patent Application No. 9125978.8, Dec. 1991.Google Scholar
  15. 15.
    R.S. Mishra and Z.Y. Ma:Mater. Sci. Eng., R, 2005, vol. 50, pp. 1–78.CrossRefGoogle Scholar
  16. 16.
    R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee:Scripta Mater., 2000, vol. 42, pp. 163–68.CrossRefGoogle Scholar
  17. 17.
    Z.Y. Ma, R.S. Mishra, and M.W. Mahoney:Acta Mater., 2002, vol. 50, pp. 4419–30.CrossRefGoogle Scholar
  18. 18.
    Z.Y. Ma and R.S. Mishra:Acta Mater., 2003, vol. 51, pp. 3551–69.CrossRefGoogle Scholar
  19. 19.
    Z.Y. Ma, R.S. Mishra, M.W. Mahoney, and R. Grimes:Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1447–58.Google Scholar
  20. 20.
    Z.Y. Ma and R.S. Mishra:Scripta Mater., 2005, vol. 53, pp. 75–80.CrossRefGoogle Scholar
  21. 21.
    R.S. Mishra, Z.Y. Ma, and I. Charit:Mater. Sci. Eng., A, 2003, vol. 341A, pp. 307–10.Google Scholar
  22. 22.
    P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney:Scripta Mater., 2001, vol. 44, pp. 61–66.CrossRefGoogle Scholar
  23. 23.
    J.E. Spowart, Z.Y. Ma, and R.S. Mishra: inFriction Stir Welding and Processing II, K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and T. Lienert, eds., TMS, Warrendale, PA, 2003, pp. 243–52.Google Scholar
  24. 24.
    Z.Y. Ma, S.R. Sharma, R.S. Mishra, and M.W. Mahoney:Mater. Sci. Forum, 2003, vols. 426–432, pp. 2891–96.CrossRefGoogle Scholar
  25. 25.
    S.R. Sharma, Z.Y. Ma, R.S. Mishra, and M.W. Mahoney:Scripta Mater., 2004, vol. 51, pp. 237–41.CrossRefGoogle Scholar
  26. 26.
    M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel:Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.Google Scholar
  27. 27.
    W. Tang, X. Guo, J.C. McClure, and L.E. Murr:J. Mater. Processing Manufacturing Sci, 1998, vol. 7, pp. 163–72.CrossRefGoogle Scholar
  28. 28.
    Y.S. Sato, H. Kokawa, M. Enmoto, and S. Jogan:Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2429–37.Google Scholar
  29. 29.
    T. Hashimoto, S. Jyogan, K. Nakata, Y.G. Kim, and M. Ushio:Proc. 1st Int. Symp. on Friction Stir Welding, Thousand Oaks, CA, June 14–16, 1999.Google Scholar
  30. 30.
    Y.J. Kwon, N. Saito, and I. Shigematsu:J. Mater. Sci. Lett., 2002, vol. 21, pp. 1473–76.CrossRefGoogle Scholar
  31. 31.
    Y.S. Sato, M. Urata, and H. Kokawa:Metall. Mater. Trans. A, 2002, vol. 33A, pp. 625–35.Google Scholar
  32. 32.
    A.P. Reynolds:Sci. Technol. Welding Joining, 2000, vol. 5, pp. 120–24.CrossRefGoogle Scholar
  33. 33.
    K. Colligan:Weld J., 1999, vol. 78, pp. 229S-237S.Google Scholar
  34. 34.
    B. London, M. Mahoney, W. Bingel, M. Calabrese, R.H. Bossi, and D. Waldron: inFriction Stir Welding and Processing II, K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and T. Lienert, eds., TMS, Warrendale, PA, 2003, pp. 3–10.Google Scholar
  35. 35.
    L.E. Murr, R.D. Flores, O.V. Flores, J.C. McClure, G. Liu, and D. Brown:Mater. Res. Innovat., 1998, vol. 1, pp. 211–23.CrossRefGoogle Scholar
  36. 36.
    J.H. Ouyang and R. Kovacevic:J. Mater. Eng. Performance, 2002, vol. 11, pp. 51–63.CrossRefGoogle Scholar
  37. 37.
    S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel:Sci. Technol. Welding Joining, 2001, vol. 6, pp. 191–93.CrossRefGoogle Scholar
  38. 38.
    M.B. Stewart, G.P. Adamas, A.C. Nunes, Jr., and P. Romine:Developments in Theoretical and Applied Mechanics, Florida Atlantic University, Boca Raton, FL, 1998, pp. 472–84.Google Scholar
  39. 39.
    L. Ke, L. Xing, and J.E. Indacochea:Joining of Advanced and Specialty Materials IV, ASM INTERNATIONAL, Materials Park, OH, 2002, pp. 125–34.Google Scholar
  40. 40.
    K.N. Krishnan:Mater. Sci. Eng., A, 2002, vol. A327, pp. 246–51.Google Scholar
  41. 41.
    G. Biallas, R. Braun, C.D. Donne, G. Staniek, and W.A. Keysser:1st Int. Conf. on Friction Stir Welds, Thousand Oaks, CA, 1999.Google Scholar
  42. 42.
    A. Askari, S. Silling, B. London, and M. Mahoney: inFriction Stir Welding and Processing, K.V. Jata, M.W. Mahoney, R.S. Mishra, and D.P. Field, eds., TMS, Warrendale, PA, 2001, pp. 43–54.Google Scholar
  43. 43.
    S. Shivkumar, S. Ricci, Jr., C. Keller, and D. Apelian:J. Heat Treatment, 1990, vol. 8, pp. 63–70.Google Scholar
  44. 44.
    S. Shivkumar, S. Ricci, Jr., B. Steenhoff, D. Apelian, and G. Sigworth:AFS Trans., 1989, vol. 97, pp. 791–810.Google Scholar
  45. 45.
    J.W. Martin and R.D. Doherty:Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, United Kingdom, 1976, p. 35.Google Scholar
  46. 46.
    Q.C. Wang, C.H. Cáceres, and J.R. Griffiths:ASF Trans., 1998, vol. 106, pp. 131–36.Google Scholar
  47. 47.
    C.H. Cáceres, C.J. Davidson, and J.R. Griffiths:Mater. Sci. Eng., A, 1995, vol. A197, pp. 171–79.Google Scholar
  48. 48.
    C.H. Cáceres and Q.C. Wang:Int. J. Cast Met. Res., 1996, vol. 9, pp. 157–62.Google Scholar
  49. 49.
    M. Tiryakioğlu, J. Campbell, and J.T. Staley:Scripta Mater., 2003, vol. 49, pp. 873–78.CrossRefGoogle Scholar
  50. 50.
    M.L. Santella, T. Engstrom, D. Storjohann, and T.Y. Pan:Scripta Mater., 2005, vol. 53, pp. 201–06.CrossRefGoogle Scholar
  51. 51.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra:Scripta Mater., 2006, vol. 54, pp. 1623–26.CrossRefGoogle Scholar
  52. 52.
    W.M. Thomas, E.D. Nicholas, and S.D. Smith:Aluminum 2001-Proc. TMS 2001 Aluminum Automotive and Joining Sessions, S.K. Das, J.G. Kaufman, and T.J. Lienert, eds., TMS, Warrendale, PA, 2001, p. 213.Google Scholar
  53. 53.
    Metals Handbook, 9th ed., ASM, Metals Park, OH, 1988, vol. 15.Google Scholar
  54. 54.
    S. Shivkumar, S. Ricci, Jr., C. Keller, and D. Apelian:AFS Trans., 1990, vol. 98, pp. 913–22.Google Scholar
  55. 55.
    D.L. Zhang, L.H. Zheng, and D.H. St John:J. Light Met., 2002, vol. 2, pp. 27–36.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Z. Y. Ma
    • 1
  • S. R. Sharma
    • 2
  • R. S. Mishra
    • 3
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.Intel CorporationPortland
  3. 3.Department of Materials Science and Engineering, Center for Friction Stir ProcessingUniversity of MissouriRolla

Personalised recommendations