Advertisement

Metallurgical and Materials Transactions A

, Volume 37, Issue 11, pp 3221–3231 | Cite as

Microstructural effects on the springback of advanced high-strength steel

  • Wei Gan
  • S. S. Babu
  • Nick Kapustka
  • Robert H. Wagoner
Article

Abstract

The application of advanced high-strength steels (AHSS) has been growing rapidly in the automotive industry. Because of their high-strength, thinner sheet metals can be used for body components to achieve both weight savings and increased safety. However, this will lead to greater springback deviation from design after the forming operation. Fundamental understanding and prediction of springback are required for springback compensation and tooling design. While various types of continuum mechanics based models have been proposed to simulate the mechanical behavior of advanced high-strength steels, few of them consider microstructural effects such as material heterogeneity. In this study, through sheet thickness strength variation has been observed in DP 780 and TRIP 780 steels. Finite-element simulation indicates that the through thickness effect (TTE) can have a significant impact on the springback behavior of these sheet metals. This is verified through our experimental work using draw-bend testing. The results suggest that microstructural effects should be considered to accurately simulate springback of AHSS. Based on these results, implications of different microstructural designs will be discussed.

Keywords

Ferrite Martensite Material Transaction Sheet Metal Sheet Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Chainer:AISE Steel Technol., 2002, vol. 79 (7–8), pp. 69–73.Google Scholar
  2. 2.
    J.R. Shaw and B.K. Zuidema:J. Mater. Manuf., 2001, vol. 5 (110), pp. 976–83.Google Scholar
  3. 3.
    T. Senuma:Can. Metall. Q., 2004, vol. 43 (1), pp. 1–12.Google Scholar
  4. 4.
    R. Bode, M. Meurer, T.W. Schaumann, and W.W. Arnecke:Galvatech’04 Conf. Proc., reprinted by Association for Iron & Steel Technology, 2004, Warrendale, PA.Google Scholar
  5. 5.
    T. Senuma:Iron Steel Inst. Jpn. Int., 2001, vol. 41 (6), pp. 520–32.Google Scholar
  6. 6.
    S. Keeler:Met. Forming, Apr. 2005, pp. 52–53.Google Scholar
  7. 7.
    S.M. Song, K. Sugimoto, M. Kobayashi, H. Matsubara, and T. Kashima:Tetsu-to-Hagane, 2000, vol. 86 (8), pp. 563–69.Google Scholar
  8. 8.
    M. Takahashi:Nippon Steel Techn. Rep., 2003, vol. 88, pp. 2–7.Google Scholar
  9. 9.
    International Iron and Steel Institute: Advanced High Strength Steel (AHSS) Application Guidelines, Mar. 2005, www.worldautosteel.orgGoogle Scholar
  10. 10.
    E. Pereloma:Mater. Austr., 2003, Nov.–Dec., pp. 6–9.Google Scholar
  11. 11.
    L. Svensson and J.K. Larsson:6th Int. Trends in Welding Research Conf. Proc., 2002, pp. 787–92.Google Scholar
  12. 12.
    E. Biro and A. Lee:Sheet Metal Welding Conf. XI, 2004, Sterling Heights, MI.Google Scholar
  13. 13.
    C. Hsu, P. Soltis, D. Barton, and C. Occhialini:Sheet Metal Welding Conf. XI, Sterling Heights, MI, 2004.Google Scholar
  14. 14.
    C. Conrady and N. Kapustka:Sheet Metal Welding Conf. XII, Livonia, MI, May 9–12, 2006.Google Scholar
  15. 15.
    S. Papaefthymiou, W. Bleck, U. Prahl, C. Acht, J. Sietsma, and S. van der Zwaag:Mater. Sci. Forum, 2003, vol. 426 (4), pp. 1355–60.CrossRefGoogle Scholar
  16. 16.
    B. Högmanet al.:Verschleißschutztechnik, Schopfheim, Germany, 2004.Google Scholar
  17. 17.
    G. Hartmann:Processing State of the Art Multiphase Steels, ACI Conf. Berlin, 2004.Google Scholar
  18. 18.
    B. Carlsson:3rd Int. Conf. Exhib. on Design and Production of Dies and Molds and 7th Int. Symp. on Advances in Abrasive Technology, Bursa, Turkey, June 17–19, 2004.Google Scholar
  19. 19.
    Y. Kuriyama: No. 175-76thNMS (Nishiyama Memorial Sem.), ISIJ, Tokyo, Japan, 2001, p. 1.Google Scholar
  20. 20.
    E. Doege, S. Kulp, and C. Sunderkotter:Steel Res., 2002, vol. 73 (6–7), pp. 303–08.Google Scholar
  21. 21.
    A. Andersson:J. Mater. Proc. Technol., 2005, vol. 169 (3), pp. 352–56.CrossRefGoogle Scholar
  22. 22.
    C. Greisert and J. Wesemann:Steel Res., 2002, vol. 73 (6–7), pp. 309–13.Google Scholar
  23. 23.
    T. Ohwue, T. Yoshida, Y. Shirai, and T. Kikuma:Mater. Trans., 2003, vol. 44 (5), pp. 946–50.CrossRefGoogle Scholar
  24. 24.
    J.C. Lin and C.C. Tai:Int. J. Adv. Manuf. Technol., 1999, vol. 15 (3), pp. 163–70.CrossRefGoogle Scholar
  25. 25.
    D.K. Leu:J. Mater. Proc. Technol., 1997, vol. 66 (1–3), pp. 9–17.CrossRefGoogle Scholar
  26. 26.
    D.A. Smith:Die Design Handbook, 3rd ed., Society of Manufacturing Engineers, Dearborn, MI, 1990.Google Scholar
  27. 27.
    G. Sachs:Principles and Methods of Sheet Metal Fabricating, Reinhold Publishing Corp., New York, NY, 1951.Google Scholar
  28. 28.
    F.W. Wilson:Die Design Handbook, 1st ed., McGraw-Hill, Columbus, OH, 1955.Google Scholar
  29. 29.
    R.D. Webb and D.E. Hardt:J. Eng. Indus.-Trans. ASME, 1991, vol. 113, pp. 44–52.Google Scholar
  30. 30.
    C. Hindman and K.B. Ousterhout:J. Mater. Proc. Technol., 2000, vol. 99, pp. 38–48.CrossRefGoogle Scholar
  31. 31.
    A.P. Karafillis and M.C. Boyce:Int. J. Mech. Sci., 1992, vol. 34, pp. 113–31.CrossRefGoogle Scholar
  32. 32.
    A.P. Karafillis and M.C. Boyce:J. Mater. Proc. Technol., 1992, vol. 32, pp. 499–508.CrossRefGoogle Scholar
  33. 33.
    A.P. Karafillis and M.C. Boyce:Int. J. Mach. Tools Manuf., 1996, vol. 36, pp. 503–26.CrossRefGoogle Scholar
  34. 34.
    W. Gan and R.H. Wagoner:Int. J. Mech. Sci., 2004, vol. 46 (7), pp. 1097–113.CrossRefGoogle Scholar
  35. 35.
    W. Gan, R.H. Wagoner, K. Mao, S. Price, and F. Rasouli:J. Mater. Proc. Technol., 2004, vol. 126 (4), pp. 360–67.Google Scholar
  36. 36.
    R. Lingbeek, J. Huetink, S. Ohnimus, M. Petzoldt, and J. Weiher:J. Mater. Proc. Technol., 2005, vol. 169 (1), pp. 115–25.CrossRefGoogle Scholar
  37. 37.
    F.J. Gardiner:Trans. ASME, 1957, vol. 79, pp. 1–9.Google Scholar
  38. 38.
    W. Schroeder:Trans. ASME, 1943, vol. 65, pp. 817–27.Google Scholar
  39. 39.
    L. Papeleux and J.P. Ponthot:J. Mater. Proc. Technol., 2002, vol. 125, pp. 785–91.CrossRefGoogle Scholar
  40. 40.
    L. Sanchez, R.D. Robertson, and J.C. Gerdeen: SAE Paper 960595, Society of Automotive Engineers, Warrendale, PA, 1996.Google Scholar
  41. 41.
    B.W. Shaffer and R.N. House, Jr.:ASME J. Appl. Mech., 1955, vol. 22, pp. 305–10.Google Scholar
  42. 42.
    B.S. Levy:J. Appl. Metalworking, 1984, vol. 3, pp. 135–41.Google Scholar
  43. 43.
    L.M. Geng and R.H. Wagoner:Int. J. Mech. Sci., 2002, vol. 44, pp. 123–48.CrossRefGoogle Scholar
  44. 44.
    W.D. Carden, L.M. Geng, D.K. Matlock and R.H. Wagoner:Int. J. Mech. Sci., 2002, vol. 44, pp. 79–101.CrossRefGoogle Scholar
  45. 45.
    K.P. Li, W.D. Carden, and R.H. Wagoner:Int. J. Mech. Sci., 2002, vol. 44, pp. 103–22.CrossRefGoogle Scholar
  46. 46.
    M. Huang and J.C. Gerdeen:Analysis of Autobody Stamping Technology, Society of Automotive Engineers, Warrendale, PA, 1994, 125–38.Google Scholar
  47. 47.
    T.X. Yu and W. Johnson:J. Mech. Working Technol., 1982, vol. 6 (1), pp. 5–21.CrossRefGoogle Scholar
  48. 48.
    S.W. Lee and D.Y. Yang:J. Mater. Proc. Technol., 1998, vol. 80 (1), pp. 60–67.CrossRefGoogle Scholar
  49. 49.
    W. Gan, P. Zhang, R.H. Wagoner, and G.S. Daehn:Int. J. Mater. Res. Adv. Technol., 2005, June, pp. 572–577.Google Scholar
  50. 50.
    W. Gan, P. Zhang, R.H. Wagoner, and G.S. Daehn:Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2097–106.Google Scholar
  51. 51.
    D.F. Watt, X.Q. Xu, and D.J. Lloyd:Acta Mater., 1996, vol. 44 (2), pp. 789–99.CrossRefGoogle Scholar
  52. 52.
    Y.L. Shenet al.:Acta Metall. Mater., 1995, vol. 43 (4), pp. 1701–22.CrossRefGoogle Scholar
  53. 53.
    M. Ekh, R. Lillbacka, and K. Runesson:Int. J. Plast., 2004, vol. 20 (12), pp. 2143–59.CrossRefGoogle Scholar
  54. 54.
    J.O. Andersson, T. Helander, L.H. Hoglundet al.:CALPHAD, 2002, vol. 26 (2), pp. 273–312.CrossRefGoogle Scholar
  55. 55.
    E.O. Hall:Proc. Phys. Soc., Ser. B, 1951, vol. 64, pp. 747–53.CrossRefGoogle Scholar
  56. 56.
    N.J. Petch:J. Iron Steel Inst., 1953, May, pp. 25–28.Google Scholar
  57. 57.
    E.F. Rauch and J.H. Schmitt:Mater. Sci. Eng. A, 1989, vol. 113, pp. 441–48.CrossRefGoogle Scholar
  58. 58.
    D.A. Hughes and N. Hansen:Acta Mater., 2000, vol. 48 (11), pp. 2985–3004.CrossRefGoogle Scholar
  59. 59.
    Abaqus/Standard User’s Manual 6.5, ABAQUS, Inc., Providence, RI, 2004.Google Scholar
  60. 60.
    J.F. Wang, R.H. Wagoner, D.K. Matlock, and F. Barlat:Int. J. Solids Struct., 2005, vol. 42 (5–6), pp. 1287–1307.CrossRefGoogle Scholar
  61. 61.
    J.F. Wang, R.H. Wagoner, D.K. Matlock, W.D. Carden, D.K. Matlock, and F. Barlat:Int. J. Plas., 2004, vol. 20 (12), pp. 2209–32.CrossRefGoogle Scholar
  62. 62.
    S. Bugat, J. Besson, and A. Pineau:Comp. Mater. Sci., 1999, vol. 16 (1–4), pp. 158–66.CrossRefGoogle Scholar
  63. 63.
    P. Dawson, D. Boyce, S. MacEwen, and R. Rogge:Metall. Mater. Trans. A., 2000, vol. 31 (6), pp. 1543–55.Google Scholar
  64. 64.
    S.S. Babu, S.A. David, and M. Quintana:Welding J., 2001, vol. 80, pp. 91s-97s.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Wei Gan
    • 1
  • S. S. Babu
    • 1
  • Nick Kapustka
    • 1
  • Robert H. Wagoner
    • 2
  1. 1.Edison Welding InstituteColumbus
  2. 2.Department of Materials Science and EngineeringThe Ohio State UniversityColumbus

Personalised recommendations