On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields

  • R. Roussarie


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [C] L. A. Cherkas:Structure of a successor function in the neighborhood of a separatrix of a perturbed analytic autonomous system in the Plane. Translated from Differentsial'nye Uravneniya, Vol. 17, no. 3, March, 1981 pp. 469–478.MathSciNetGoogle Scholar
  2. [A] A.A. Andronov, E.A. Leontovich, I.I. Gordon and A.G. Maier: “Theory of Bifurcation of Dynamical Systems on the Plane” Israel Program of Scientific Translations, Jerusalem, 1971.Google Scholar
  3. [D] H. Dulac:Sur les cycles limites. Bull. Soc. Math. France, 51, (1923), 45–188.MathSciNetGoogle Scholar
  4. [S] S. Sternberg:On the structure of local homeomorphisms of euclidean n-space II. Amer. J. of Math., Vol. 80, (1958) pp. 623–631.MATHCrossRefMathSciNetGoogle Scholar
  5. [I] Ju. S. Il'Iasenko:Limit cycles of polynomial vector fields with non degenerate singular points on the real plane, Funk, Anal. Ego. Pri., 18, 3, (1984), 32–34 (Trans.) in: “Func. Anal. and Appl., 18, 3, (1985), 199–209.Google Scholar
  6. [H] A. Hovansky:Théorème de Bézout pour les fonctions de Liouville, Préprint M/81/45—IHES, (1981).Google Scholar

Copyright information

© Sociedade Brasileira de Matemática 1986

Authors and Affiliations

  • R. Roussarie
    • 1
  1. 1.Laboratoire de Topologie-UA 755 CNRSUniversité de BourgogneDijon CedexFrance

Personalised recommendations