Differentiable functions

  • Edward Bierstone


Open Subset Compact Subset Differentiable Function Extension Operator Continuous Linear Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Bierstone,Extension of Whitney fields from subanalytic sets,Invent. Math. 46 (1978), 277–300.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. Bierstone and T. Bloom,On the composition of C α functions with an analytic mapping (to appear).Google Scholar
  3. [3]
    E. Bierstone and P. Milman,Extension and lifting of C α Whitney fields,L'Enseignement Math. 23 (1977), 129–137.zbMATHMathSciNetGoogle Scholar
  4. [4]
    E. Bierstone and G. W. Schwarz (to appear).Google Scholar
  5. [5]
    F. Bruhat and H. Cartan,Sur les composantes irréductibles d'un sous-ensemble analytique-réel,C. R. Acad. Sci. Paris 244 (1957), 1123–1126.zbMATHMathSciNetGoogle Scholar
  6. [6]
    H. Cartan,Variétés analytiques réelles et variétés analytiques complexes,Bull. Soc. Math. France 85 (1957), 77–99.zbMATHMathSciNetGoogle Scholar
  7. [7]
    P. B. Djakov and B. S. Mityagin,The structure of polynomial ideals in the algebra of entire functions (to appear).Google Scholar
  8. [8]
    G. Glaeser,Etude de quelques algebres tayloriennes,J. Analyse Math. (Jerusalem) 6 (1958), 1–124.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Glaeser,Fonctions composées différentiables,Ann. of Math. 77 (1963), 193–209.CrossRefMathSciNetGoogle Scholar
  10. [10]
    M. R. Hestenes,Extension of the range of a differentiable function,Duke Math. J. 8 (1941), 183–192.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    H. Hironaka,Resolution of signularities of an algebraic variety over a field of characteristic zero I, II,Ann. of Math. 79 (1964), 109–326.CrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Hironaka,Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra (in honor of Y. Akizuki), Kinokuniya, Tokyo (1973), 453–493.Google Scholar
  13. [13]
    H. Hironaka,Introduction to real-analytic sets and real-analytic maps, Istituto Matematico “L. Tonelli”, Pisa (1973).Google Scholar
  14. [14]
    G. Lassalle,Une démonstration du théorème de division pour les fonctions différentiables,Topology 12 (1973), 41–62.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    L. Lichtenstein,Eine elementare Bemerkung zur reellen Analysis,Math. Zeitschrift 30 (1929), 794–795.CrossRefMathSciNetzbMATHGoogle Scholar
  16. [16]
    S. Łojasiewicz,Sur le problème de la division,Studia Math. 8 (1959), 87–136.Google Scholar
  17. [17]
    S. Łojasiewicz,Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Y vette (1964).Google Scholar
  18. [18]
    S. Łojasiewicz,Whitney fields and the Malgrange-Mather preparation theorem, Proceedings of Liverpool Singularities Symposium 1, Lecture Notes in Math. No. 192, Springer, Berlin (1971), 106–115.Google Scholar
  19. [19]
    B. Malgrange,Division des distributions, Séminaire L. Schwartz 1959/60, exposés 21–25.Google Scholar
  20. [20]
    B. Malgrange,Le théorème de préparation en géométrie différentiable, Séminaire H. Cartan 1962/63, Benjamin, New York (1967), exposés 11–13, 22.Google Scholar
  21. [21]
    B. Malgrange,Ideals of Differentiable Functions, Oxford Univ. Press, London (1966).zbMATHGoogle Scholar
  22. [22]
    B. Malgrange,Frobenius avec singularités, I.Codimension un,Inst. Hautes Études Sci. Publ. Math No. 46 (1976), 163–173.zbMATHMathSciNetGoogle Scholar
  23. [23]
    J. Mather,Stability of C mappings, I.The division theorem,Ann. of Math. 87 (1968), 89–104.CrossRefMathSciNetGoogle Scholar
  24. [24]
    J. Mather,Differentiable invariants,Topology 16 (1977), 145–155.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. Merrien,Prolongateurs de fonctions différentiables d'une variable réelle,J. Math. Pures Appl. 45 (1966), 291–309.zbMATHMathSciNetGoogle Scholar
  26. [26]
    P. Milman,The Malgrange-Mather division theorem,Topology 16 (1977), 395–401.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    B. Mityagin,Approximate dimension and bases in nuclear spaces, Russian Math. Surveys 16:4 (1961), 59–128 =Uspekhi Mat Nauk 16∶4 (1961), 63–132.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    R. Moussu and J. C. Tougeron,Fonctions composées analytiques et différentiables,C. R. Acad. Sci. Paris 282 (1976), A1237-A1240.MathSciNetGoogle Scholar
  29. [29]
    R. Narasimhan,Introduction to the theory of analytic spaces, Lecture Notes in Math. No. 25, Springer, Berlin (1966).zbMATHGoogle Scholar
  30. [30]
    L. Nirenberg,A proof of the Malgrange preparation theorem, Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math. No. 192, Springer, Berlin (1971), 97–105.Google Scholar
  31. [31]
    G. W. Schwarz,Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63–68.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    R. T. Seeley,Extension of C functions defined in a half space,Proc. Amer. Math. Soc. 15 (1964), 625–626.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton (1970).zbMATHGoogle Scholar
  34. [34]
    M. Tidten, Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in ℝn definiert sind,Manuscripta Math. 27 (1979), 291–312.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    J. C. Tougeron,An extension of Whitney's spectral theorem,Inst. Hautes Études Sci. Publ. Math. No. 40 (1971), 139–148.zbMATHMathSciNetGoogle Scholar
  36. [36]
    J. C. Tougeron,Idéaux de Fonctions Différentiables, Springer, Berlin (1972).zbMATHGoogle Scholar
  37. [37]
    D. Vogt,Charakterisierung der Unterrãume von s.Math. Zeitschrift 155 (1977), 109–117.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    D. Vogt,Subspaces and quotient spaces of s, Functional Analysis: Surveys and Recent Results (Proc. Conf. Paderborn 1976), North-Holland, Amsterdam (1977), 167–187.Google Scholar
  39. [39]
    D. Vogt and M. J. Wagner,Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math (to appear).Google Scholar
  40. [40]
    H. Whitney,Analytic extensions of differentiable functions defined in closed sets,Trans. Amer. Math. Soc. 36 (1934), 63–89.zbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    H. Whitney,Differentiable functions defined in closed sets, I,Trans. Amer. Math. Soc. 36 (1934), 369–387.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    H. Whitney,Differentiable even functions,Duke Math. J. 10 (1943), 159–160.zbMATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    H. Whitney,On ideals of differentiable functions,Amer. J. Math. 70 (1948), 635–658.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 1980

Authors and Affiliations

  • Edward Bierstone
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations