Differentiable functions

  • Edward Bierstone
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Bierstone,Extension of Whitney fields from subanalytic sets,Invent. Math. 46 (1978), 277–300.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. Bierstone and T. Bloom,On the composition of C α functions with an analytic mapping (to appear).Google Scholar
  3. [3]
    E. Bierstone and P. Milman,Extension and lifting of C α Whitney fields,L'Enseignement Math. 23 (1977), 129–137.MATHMathSciNetGoogle Scholar
  4. [4]
    E. Bierstone and G. W. Schwarz (to appear).Google Scholar
  5. [5]
    F. Bruhat and H. Cartan,Sur les composantes irréductibles d'un sous-ensemble analytique-réel,C. R. Acad. Sci. Paris 244 (1957), 1123–1126.MATHMathSciNetGoogle Scholar
  6. [6]
    H. Cartan,Variétés analytiques réelles et variétés analytiques complexes,Bull. Soc. Math. France 85 (1957), 77–99.MATHMathSciNetGoogle Scholar
  7. [7]
    P. B. Djakov and B. S. Mityagin,The structure of polynomial ideals in the algebra of entire functions (to appear).Google Scholar
  8. [8]
    G. Glaeser,Etude de quelques algebres tayloriennes,J. Analyse Math. (Jerusalem) 6 (1958), 1–124.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Glaeser,Fonctions composées différentiables,Ann. of Math. 77 (1963), 193–209.CrossRefMathSciNetGoogle Scholar
  10. [10]
    M. R. Hestenes,Extension of the range of a differentiable function,Duke Math. J. 8 (1941), 183–192.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    H. Hironaka,Resolution of signularities of an algebraic variety over a field of characteristic zero I, II,Ann. of Math. 79 (1964), 109–326.CrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Hironaka,Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra (in honor of Y. Akizuki), Kinokuniya, Tokyo (1973), 453–493.Google Scholar
  13. [13]
    H. Hironaka,Introduction to real-analytic sets and real-analytic maps, Istituto Matematico “L. Tonelli”, Pisa (1973).Google Scholar
  14. [14]
    G. Lassalle,Une démonstration du théorème de division pour les fonctions différentiables,Topology 12 (1973), 41–62.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    L. Lichtenstein,Eine elementare Bemerkung zur reellen Analysis,Math. Zeitschrift 30 (1929), 794–795.CrossRefMathSciNetMATHGoogle Scholar
  16. [16]
    S. Łojasiewicz,Sur le problème de la division,Studia Math. 8 (1959), 87–136.Google Scholar
  17. [17]
    S. Łojasiewicz,Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Y vette (1964).Google Scholar
  18. [18]
    S. Łojasiewicz,Whitney fields and the Malgrange-Mather preparation theorem, Proceedings of Liverpool Singularities Symposium 1, Lecture Notes in Math. No. 192, Springer, Berlin (1971), 106–115.Google Scholar
  19. [19]
    B. Malgrange,Division des distributions, Séminaire L. Schwartz 1959/60, exposés 21–25.Google Scholar
  20. [20]
    B. Malgrange,Le théorème de préparation en géométrie différentiable, Séminaire H. Cartan 1962/63, Benjamin, New York (1967), exposés 11–13, 22.Google Scholar
  21. [21]
    B. Malgrange,Ideals of Differentiable Functions, Oxford Univ. Press, London (1966).MATHGoogle Scholar
  22. [22]
    B. Malgrange,Frobenius avec singularités, I.Codimension un,Inst. Hautes Études Sci. Publ. Math No. 46 (1976), 163–173.MATHMathSciNetGoogle Scholar
  23. [23]
    J. Mather,Stability of C mappings, I.The division theorem,Ann. of Math. 87 (1968), 89–104.CrossRefMathSciNetGoogle Scholar
  24. [24]
    J. Mather,Differentiable invariants,Topology 16 (1977), 145–155.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. Merrien,Prolongateurs de fonctions différentiables d'une variable réelle,J. Math. Pures Appl. 45 (1966), 291–309.MATHMathSciNetGoogle Scholar
  26. [26]
    P. Milman,The Malgrange-Mather division theorem,Topology 16 (1977), 395–401.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    B. Mityagin,Approximate dimension and bases in nuclear spaces, Russian Math. Surveys 16:4 (1961), 59–128 =Uspekhi Mat Nauk 16∶4 (1961), 63–132.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    R. Moussu and J. C. Tougeron,Fonctions composées analytiques et différentiables,C. R. Acad. Sci. Paris 282 (1976), A1237-A1240.MathSciNetGoogle Scholar
  29. [29]
    R. Narasimhan,Introduction to the theory of analytic spaces, Lecture Notes in Math. No. 25, Springer, Berlin (1966).MATHGoogle Scholar
  30. [30]
    L. Nirenberg,A proof of the Malgrange preparation theorem, Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math. No. 192, Springer, Berlin (1971), 97–105.Google Scholar
  31. [31]
    G. W. Schwarz,Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63–68.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    R. T. Seeley,Extension of C functions defined in a half space,Proc. Amer. Math. Soc. 15 (1964), 625–626.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton (1970).MATHGoogle Scholar
  34. [34]
    M. Tidten, Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in ℝn definiert sind,Manuscripta Math. 27 (1979), 291–312.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    J. C. Tougeron,An extension of Whitney's spectral theorem,Inst. Hautes Études Sci. Publ. Math. No. 40 (1971), 139–148.MATHMathSciNetGoogle Scholar
  36. [36]
    J. C. Tougeron,Idéaux de Fonctions Différentiables, Springer, Berlin (1972).MATHGoogle Scholar
  37. [37]
    D. Vogt,Charakterisierung der Unterrãume von s.Math. Zeitschrift 155 (1977), 109–117.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    D. Vogt,Subspaces and quotient spaces of s, Functional Analysis: Surveys and Recent Results (Proc. Conf. Paderborn 1976), North-Holland, Amsterdam (1977), 167–187.Google Scholar
  39. [39]
    D. Vogt and M. J. Wagner,Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math (to appear).Google Scholar
  40. [40]
    H. Whitney,Analytic extensions of differentiable functions defined in closed sets,Trans. Amer. Math. Soc. 36 (1934), 63–89.MATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    H. Whitney,Differentiable functions defined in closed sets, I,Trans. Amer. Math. Soc. 36 (1934), 369–387.MATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    H. Whitney,Differentiable even functions,Duke Math. J. 10 (1943), 159–160.MATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    H. Whitney,On ideals of differentiable functions,Amer. J. Math. 70 (1948), 635–658.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 1980

Authors and Affiliations

  • Edward Bierstone
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations