Annals of Biomedical Engineering

, Volume 23, Issue 5, pp 697–704 | Cite as

Biomechanical topography of human ankle cartilage

  • K. A. Athanasiou
  • G. G. Niederauer
  • R. C. SchenckJr.
Research Articles

Abstract

The material properties of normal cadaveric human cartilage in the ankle mortice (tibiotalar articulation) were evaluated to determine a possible etiologic mechanism of cartilage injury of the ankle when an obvious traumatic episode is not present. Using an automated indentation apparatus and the biphasic creep indentation methodology, creep indentation experiments were performed in five sites in the distal tibia, one site in the distal fibula, and eight sites in the proximal talus of 14 human ankles (seven pairs). Results showed significant differences in the mechanical properties of specific human ankle cartilage regions. Topographically, tibial cartilage is stiffer (1. 19 MPa) than talar cartilage (1.06 MPa). Cartilage in the anterior medial portion of the tibia has the largest aggregate modulus (HA=1.34 MPa), whereas the softest tissue was found to be in the posterior lateral (0.92 MPa) and the posterior medial (0.92 MPa) regions of the talus. The posterior lateral ridge of the talus was the thickest (1.45 mm) and the distal fibula was the thinnest (0.95 mm) articular cartilage. The largest Poisson's ratio was found in the distal fibula (0.08). The lowest and highest permeability were found in the anterior lateral regions of the astragalus (0.80 × 10−15 m4N−1sec−1) and the posterior medial region of the tibia (1.79 × 10−15 m4N−1sec−1), respectively. The anterior and posterior regions of the lateral and medial sites of the tibia were found to be 18–37% stiffer than the anatomically corresponding sites in the talus. The biomechanical results may explain clinically observed talar dome osteochondral lesions when no obvious traumatic event is present. Cartilage lesions in a repetitive overuse process in the ankle joint may be related to a disparity of mechanical properties between the articulating surfaces of the tibial and talar regions.

Keywords

Tibiotalar joint Articular cartilage Material properties Creep indentation KLM biphasic theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afoke, N., P. Byers, and W. Hutton. Contact pressures in the human hip joint.J. Bone Joint Surg. 69-B:536–541, 1987.Google Scholar
  2. 2.
    Arsever, C., and G. Bole. Experimental osteoarthritis induced by selective myectomy and tendotomy.Arthr. Rheum. 29:251–261, 1986.CrossRefGoogle Scholar
  3. 3.
    Athanasiou, K., A. Agrawal, A. Muffoletto, F. Dzida, G. Constantinides, and M. Clem. Biomechanical properties of hip cartilage in experimental animal models.Clin. Ortho. Rel. Res. 316:254–266, 1995.Google Scholar
  4. 4.
    Athanasiou, K. A., A. Agarwal, and F. J. Dzida. Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage.J. Ortho. Res. 12:340–349, 1994.CrossRefGoogle Scholar
  5. 5.
    Athanasiou, K. A., M. P. Rosenwasser, J. A. Buckwalter, T. I. Malinin, and V. C. Mow. Interspecies comparisons ofin situ intrinsic mechanical properties of knee joint cartilage.J. Ortho. Res. 9:330–340, 1991.CrossRefGoogle Scholar
  6. 6.
    Berndt, A. L., and M. Harty. Transchondral fractures (osteochondritis dissecans) of the talus.J. Bone Joint Surg. 41-A:988–1020, 1959.PubMedGoogle Scholar
  7. 7.
    Bullough, P., J. Goodfellow, and J. O'Connor. The relationship between degenerative changes and load-bearing in the human hip.J. Bone Joint Surg. 55-B:746–758, 1973.Google Scholar
  8. 8.
    Davidson, A. M., H. D. Steele, D. A. MacKenzie, and J. A. Penny. A review of twenty-one cases of transchondral fracture of the talus.J. Trauma 7:378–415, 1967.PubMedCrossRefGoogle Scholar
  9. 9.
    Day, W., S. Swanson, and M. Freeman. Contact pressures in the loaded human cadaver hip.J. Bone Joint Surg. 57-B: 302–313, 1975.Google Scholar
  10. 10.
    Gunn, D. R. Squatting and osteoarthritis of the hip.J. Bone Joint Surg. (Proc. Br. Ortho. Assoc.) 46:156, 1964.Google Scholar
  11. 11.
    Hayes, W., and L. Mockros. Viscoelastic properties of human articular cartilage.J. Appl. Physiol. 31:562–568, 1971.PubMedGoogle Scholar
  12. 12.
    Hodge, W., K. Carlson, S. Fijan, S. Burgess, P. Riley, W. Harris, and R. Mann. Contact pressures from an instrumented hip endoprosthesis.J. Bone Joint Surg. 71-A:1378–1386, 1989.PubMedGoogle Scholar
  13. 13.
    Hori, R. Y., and L. F. Mockros. Indentation tests of human articular cartilage.J. Biomech. 9:259–268, 1976.PubMedCrossRefGoogle Scholar
  14. 14.
    Kempson, G. E. The mechanical properties of articular cartilage. In:Textbook of Rheumatology, edited by L. Sokoloff. Philadelphia: W. B. Saunders, 1980, pp. 177–238.Google Scholar
  15. 15.
    Kempson, G. E. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint.Biochim. Biophys. Acta. 1075:223–230, 1991.PubMedGoogle Scholar
  16. 16.
    King, R. E., and D. F. Powell. Injury to the Talus. In:Disorders of the Foot and Ankle: Medical and Surgical Management, edited by M. H. Jahss. Philadelphia: W. B. Saunders, 1991, pp. 2293–2325.Google Scholar
  17. 17.
    Mak, A. F., W. M. Lai, and V. C. Mow. Biphasic indentation of articular cartilage—I. Theoretical analysis.Biomechanics 20:703–714, 1987.CrossRefGoogle Scholar
  18. 18.
    Mankin, H. J., V. C. Mow, J. A. Buckwalter, J. P. Iannotti, and A. Ratcliffe. Form and function of articular cartilage. In:Orthopaedic Basic Science, edited by S. S. Simon. Columbus, OH: American Academy of Orthopaedic Surgeons, 1994, pp. 1–44.Google Scholar
  19. 19.
    Maroudas, A. The permeability of articular cartilage.J. Bone Joint Surg. 50-B:166–177, 1968.Google Scholar
  20. 20.
    Meachim, G. Articular cartilage lesions in osteo-arthritis of the femoral head.J. Pathol. 107:199–210, 1972.PubMedCrossRefGoogle Scholar
  21. 21.
    Meachim, G., and I. H. Emery. Cartilage fibrillation in shoulder and hip joints in Liverpool necropsies.J. Anat. 116:161–179, 1973.PubMedGoogle Scholar
  22. 22.
    Moskowitz, R., and V. Goldberg. Osteoarthritis. In:Primer on the Rheumatic Diseases, edited by H. R. Schumacher, Jr. Chicago: AMA, 1988, pp. 171–176.Google Scholar
  23. 23.
    Mow, V. C., M. C. Gibbs, W. M. Lai, W. B. Zhu, and K. A. Athanasiou. Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study.Biomechanics 22:853–861, 1989.CrossRefGoogle Scholar
  24. 24.
    Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments.J. Biomech. Eng. 102:73–84, 1980.PubMedCrossRefGoogle Scholar
  25. 25.
    O'Farrell, T. A., and B. G. Costello. Osteochondritis dissecans of the talus.J. Bone Joint Surg. 64-B:494–497, 1982.Google Scholar
  26. 26.
    Schenck, R. C., K. A. Athanasiou, G. Constantinides, and E. Gomez. A biomechanical analysis of articular cartilage of the human elbow and a potential relationship to osteochondritis dissecans.Clin. Ortho. Rel. Res. 299:305–312, 1994.CrossRefGoogle Scholar
  27. 27.
    Shelton, M. L., and W. J. Pedowitz. Injuries to the talar dome, subtalar joint, and midfoot. In:Disorders of the Foot and Ankle: Medical and Surgical Management, edited by M. H. Jahss. Philadelphia: W. B. Saunders, 1991, pp. 2274–2292.Google Scholar
  28. 28.
    Solomon, L. Patterns of osteoarthritis of the hip.J. Bone Joint Surg. (Br.) 58:176–183, 1976.Google Scholar
  29. 29.
    Canale, S. T., R. H. Belding: Osteochondrial lesions of the Talus.J Bone Joint Surg 62A:97–102, 1980.Google Scholar

Copyright information

© Biomedical Engineering Society 1995

Authors and Affiliations

  • K. A. Athanasiou
    • 1
  • G. G. Niederauer
    • 1
  • R. C. SchenckJr.
    • 1
  1. 1.Orthopedic Biomechanics Laboratory, Department of OrthopedicsThe University of Texas Health Science CenterSan AntonioUSA

Personalised recommendations