Annals of Biomedical Engineering

, Volume 23, Issue 4, pp 409–422 | Cite as

A review of the role of efference copy in sensory and oculomotor control systems

  • Bruce Bridgeman
Starkfest: Vision & Movement in Man and Machines Perceptual-Motor Interactions


Efference copy is an internal copy of a motor innervation. In the oculomotor system it provides the only extraretinal signal about eye position that is available without delay, and it is shown to be the most important extraretinal source of information for perceptual localization and motor activity. Efference copy accompanies all voluntary eye movements and some involuntary ones, including pursuits, saccades, and the fast phases of vestibular and optokinetic nystagmus. Not all eye movements are accompanied by an efference copy; its presence is determined by a movement's function, not it dynamics. Because the gain of the efference copy mechanism is less than 1, and it does not take account of oculomotor delays and kinematics, it is supplemented by other mechanisms in achieving space constancy. It functions differently for perception and for visually guided behavior. There is only one efference copy for both eyes, reflecting Hering's law, and it is subject to adaptation.


Corollary discharge Efference copy Eye movement Saccade Space constancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bedell, H. E. Directionalization of visual targets during involuntary eye movement.Optom. Vision Sci. 67:583–589, 1990.CrossRefGoogle Scholar
  2. 2.
    Bridgeman, B. Adaptation and the two-visual-systems hypothesis.Behav. Brain Sci. 2:84–85, 1979.Google Scholar
  3. 3.
    Bridgeman, B. Multiple sources of outflow in processing spatial information.Acta Psychol. 63:35–48, 1986.CrossRefGoogle Scholar
  4. 4.
    Bridgeman, B., and D. Delgado. Sensory effects of eyepress are due to efference.Percept. Psychophysics. 36:482–484, 1984.Google Scholar
  5. 5.
    Bridgeman, B., and R. Fishman. Dissociation of corollary discharge from gaze direction does not induce a straightahead shift.Percept. Psychophysics. 37:523–528. 1985.Google Scholar
  6. 6.
    Bridgeman, B., and J. A. Graziano. Effect of context and efference copy on visual straight-ahead.Vision Res. 29: 1729–1736, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Bridgeman, B., D. Hendry, and L. Stark. Failure to detect displacement of the visual world during saccadic eye movements.Vision Res. 15:719–722, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Bridgeman, B., S. Lewis, G. Heit, and M. Nagle. Relationship between cognitive and motor-oriented systems of visual position perception.J. Exp. Psychol. Hum. Percept. Perform. 5:692–700, 1979.PubMedCrossRefGoogle Scholar
  9. 9.
    Bridgeman, B., and L. Stark. Ocular proprioception and efference copy in perception and visually guided behavior.Vision Res. 31: 1903–1913, 1991.PubMedCrossRefGoogle Scholar
  10. 10.
    Bridgeman, B., L. van der Heijden, and B. M. Velichkovsky. How our world remains stable despite disturbing influences.Behav. Brain Sci. 17 (2):282, 1994.CrossRefGoogle Scholar
  11. 11.
    Brindley, G. S., G. M. Goodwin, J. J. Kulikowski, and D. Leighton. Stability of vision with a paralysed eye.J. Physiol. 258:65–66, 1976.Google Scholar
  12. 12.
    Buisseret, P., and L. Maffei. Extraocular proprioceptive projections to the visual cortex.Exp. Brain Res. 28:421–425, 1977.PubMedCrossRefGoogle Scholar
  13. 13.
    Coren, S., D. R. Bradley, P. Hoenig, and J. Girgus. The effect of smooth tracking and saccadic eye movements on the perception of size: the shrinking circle illusion.Vision Res. 15:49–55, 1975.PubMedCrossRefGoogle Scholar
  14. 14.
    Craske, B., M. Crawshaw, and P. Heron. Disturbance of the oculomotor system due to lateral fixation.Q. J. Exp. Psych. 27:459–465, 1975.Google Scholar
  15. 15.
    Deubel, H. Adaptivity of gain and direction in oblique sacades. In:Eye Movements: From Physiology to Cognition, edited by J. K. O'Regan and A. Levy-Schoen. Amsterdam North-Holland Elsevier Science, 1987, pp. 187–190.Google Scholar
  16. 16.
    Dichgans, J., F. Koerner, and K. Voigt. Vergleichende Skalierung des afferenten und efferenten Bewegungssehens beim Menschen: lineare Funktionen mit verschiedener Anstiegssteilheit.Psychol. Forsch. 32:277–295, 1969.PubMedCrossRefGoogle Scholar
  17. 17.
    Dittler, R. Über die Raumfunktion der Netzhaut in ihre Abhängigkeit vom Lagegefühl der Augen und vom Labyrinth.Z. Sinnesphysiol. 52:274–310, 1921.Google Scholar
  18. 18.
    Donaldson, I. and A. C. Long. Interaction between extraocular proprioceptive and visual signals in the superior colliculus of the cat.J. Physiol. 298:85–110, 1980.PubMedGoogle Scholar
  19. 19.
    Fendrich, R., A. Mack, and J. Pleune. The adaptation of position constancy during saccadic eye movements.Invest. Ophthalmol. Visual Sci. Suppl. 18:107, 1977.Google Scholar
  20. 20.
    Festinger, L., and A. M. Easton. Inferences about the efferent system based on a perceptual illusion produced by eye movements.Psychol. Rev. 81:44–58, 1974.PubMedCrossRefGoogle Scholar
  21. 21.
    Festinger, L., H. A. Sedgwick, and J. D. Holtzman. Visual perception during smooth pursuit eye movements.Vision Res. 16:1377–1386, 1976.PubMedCrossRefGoogle Scholar
  22. 22.
    Fiorentini, A., and L. Maffei. Instability of the eye in the dark and proprioception.Nature 269:330–331, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Fujii, E. Forming a figure by movements of a luminous point.Jpn. J. Psychol. 18:196–232, 1943.Google Scholar
  24. 24.
    Gauthier, G., D. Nommay, and J.-L. Vercher. The role of ocular muscle proprioception in visual localization of targets.Science 249:58–61, 1990.PubMedCrossRefGoogle Scholar
  25. 25.
    Grüsser, O.-J., and A. Krizic. Time constant of pre- and postsaccadicrecalibration of retinal spatial values as measured by a new afterimage method.Invest. Ophthalmol. Visual Sci. Suppl 25:263, 1984.Google Scholar
  26. 26.
    Grüsser, O.-J., A. Krizic, and L.-R. Weiss. Afterimage movement during saccades in the dark.Vision Res. 27:215–226, 1987.PubMedCrossRefGoogle Scholar
  27. 27.
    Grüsser, O.-J., J. Kulikowski, M. Pause, and J. O.-J. Wollensak. Optokinetic nystagmus, sigma-optokinetic nystagmus and pursuit movements elicited by stimulation of an immobilized human eye.J. Physiol. 320:21P, 1981.Google Scholar
  28. 28.
    Hallett, P., and A. Lightstone. Saccadic eye movements towards stimuli triggered by prior saccades,Vision Res. 16: 99–106, 1976a.PubMedCrossRefGoogle Scholar
  29. 29.
    Hallett P., and A. Lightstone. Saccadic eye movements to flashed targets.Vision Res 16:107–114, 1976b.PubMedCrossRefGoogle Scholar
  30. 30.
    Haustein, W., and H. Mittelstaedt. Evaluation of retinal orientation and gaze direction in the perception of the vertical.Vision Res. 30:255–262, 1990.PubMedCrossRefGoogle Scholar
  31. 31.
    Hein, A. and R. Diamond. Contribution of eye movement to be representation of space. In:Spatially Oriented Behavior, edited by A. Hein and M. Jeannerod. New York: Springer-Verlag, 1983, pp. 119–133.Google Scholar
  32. 32.
    Helmholtz, H.A Treatise on Physiological Optics. vol 3, edited and translated by J. P. C. Southall. New York: Dover, 1962 (Originally published as Handbuch der Physiologischen Optik Leipzig, Hamburg: Voss, 1866).Google Scholar
  33. 33.
    Hering, E.Beiträge zur Physiologie, Band I. Berlin: Springer-Verlag, 1861.Google Scholar
  34. 34.
    Hering, E.Die Lehre vom Binokularen Sehen. Leipzig: Engelmann, 1868. (Published asThe Theory of Binocular Vision, edited by B. Bridgeman and L. Stark, and Translated by B. Bridgeman, New York: Plenum, 1977.)Google Scholar
  35. 35.
    Hill, A. L. Direction constancy.Percept. Psychophysics. 11:175–178, 1972.Google Scholar
  36. 36.
    Holtzman, J. D., and H. A. Sedgwick. The integration of motor control and visual perception. InHandbook of Cognitive Neuroscience, edited by M. S. Gazzaniga. New York: Plenum, 1984, pp. 64–75.Google Scholar
  37. 37.
    Holtzman, J. D., H. A. Sedgwick, and L. K. Festinger. Interaction of perceptually monitored and unmonitored efferent commands for smooth pursuit eye movements.Vision Res. 18:1545–1555, 1978.PubMedCrossRefGoogle Scholar
  38. 38.
    Ilg, U. J., B. Bridgeman, and K. P. Hoffmann. Influence of mechanical disturbance on oculomotor behavior.Vision Res. 29:545–551, 1989.PubMedCrossRefGoogle Scholar
  39. 39.
    Kashii, S. Y. Matsui, Y. Honda, J. Ito, M. Sasa, and S. Takaori. The role of extraocular proprioception in vestibuloocular reflex of rabbis.Invest. Ophthalmol. Visual Sci. 30:2258–2264, 1989.Google Scholar
  40. 40.
    Koellner, H. Ber die Abhängigkeit der räumlichen Orientierung von den Augenbewegungen.Klin. Wochenschr. 2:482–484, 1923.CrossRefGoogle Scholar
  41. 41.
    Kornmüller, A. E. Eine experimentelle Anaesthesie der äusseren Augenmuskeln am Menschen und ihre Auswirkungen.J. Psychol. Neurol. 41:354–366, 1931.Google Scholar
  42. 42.
    Leigh, R. J., and D. S. Zee.The Neurology of Eye Movements (second edition). New York: Davis, chapter 3, 1991.Google Scholar
  43. 43.
    Lewis, R. F., and D. S. Zee. Abnormal spatial localization with trigeminal-oculomotor synkinesis. Evidence for a proprioceptive effect.Brain 116:1105–1118, 1993.PubMedCrossRefGoogle Scholar
  44. 44.
    Ludvigh, E. Possible role of proprioception in the extraocular muscles.Arch. Ophthalmol. 48:436–441, 1952.Google Scholar
  45. 45.
    Mack, A.. Perceptual aspects of motion in the frontal plane. In:Handbook of Perception and Human Performance vol. 1,Sensory Processes and Perception edited by K. R. Boff, L. Kaufman, and J. P. Thomas. New York: Wiley and Sons, 1986, pp. 291–298.Google Scholar
  46. 46.
    Mack, A., R. Fendrich, and J. Pleune. Adaption to an altered relation between retinal image-displacements and saccadic eye movement.Vision Res. 18:1321–1327, 1978.PubMedCrossRefGoogle Scholar
  47. 47.
    Mack, A., R. Fendrich, and S. Sirigatti. A rebound illusion in visual tracking.Am. J. Psychol. 86:425–433, 1973.PubMedCrossRefGoogle Scholar
  48. 48.
    Mack, A., and E. Herman. The underestimation of distance during pursuit eye movements.Percept. Psychophysics. 12: 471–473, 1972.Google Scholar
  49. 49.
    MacKay, D. M. Visual stability and voluntary eye movements. In:Handbook of Sensory Physiology, vol. 7/3, edited by R. Jung: New York: Springer-Verlag, 1973, pp. 307–331.Google Scholar
  50. 50.
    Matin, L., Visual localization and eye movements. In:Tutorials on Motion Perception, edited by A. H. Wertheim, W. A. Wagenaar, and H. W. Leibowitz. New York: Plenum, 1982, pp. 101–156.Google Scholar
  51. 51.
    Matin, L. Visual localization and eye movements. In:Hand-book of perception and human performance, vol. 1,Sensory Processes and Perception, edited by K. R. Boff, L. Kaufman, and J. P. Thomas, New York: Wiley and Sons, 1986, pp. 20.1–20.45.Google Scholar
  52. 52.
    Matin L., E. Picoult, J. K. Stevens, M. W. Edwards, J. D. Young, and R. MarArthur. Visual context-dependent mislocalizations under curare-induced partial paralysis of the extraocular muscles.Invest. Ophthalmol. Visual Sci. Suppl. 19:81, 1980.Google Scholar
  53. 53.
    Matin, L., E. Picoult, J. K. Stevens, M. W. Edwards, Jr., D. Young, and R. MacArthur. Oculoparalytic illusion: Visual-field-dependent spatial mislocalizations by humans partially paralyzed with curare.Science 216:198–201, 1982.PubMedCrossRefGoogle Scholar
  54. 54.
    Mittelstaedt, H. Basic solutions to the problem of head-centric visual localization. In:Perception and Control of Self-Motion, edited by R. Warren and A. Wertheim. Hillsdale, NJ: Erlbaum, 1990, pp. 268–287.Google Scholar
  55. 55.
    Moidell, B. G., and H. E. Bedell. Changes in oculocentric visual direction induced by the recalibration of saccades.Vision Res 28:329–336, 1988.PubMedCrossRefGoogle Scholar
  56. 56.
    Morgan, C. L., Constancy of egocentric visual direction.Percept. Psychophysics. 23:61–68, 1978.Google Scholar
  57. 57.
    Ono, H. and R. Nakazimo. Saccadic eye movements during changes in fixation to stimuli at different distances.Vision Res. 17:233–238, 1977.PubMedCrossRefGoogle Scholar
  58. 58.
    Paap, K. and S. Ebenholtz. Perceptual consequences of potentiation in the extraocular muscles: an alternative explanation for adaptation to wedge prisms.J. Exp. Psychol. Hum. Percept. Perform. 2:457–468, 1976.PubMedCrossRefGoogle Scholar
  59. 59.
    Pola, J., and H. J. Wyatt. The perception of target motion during smooth pursuit eye movements in the open-loop condition: characteristics of retinal and extraretinal signals.Vision Res. 29:471–483, 1989.PubMedCrossRefGoogle Scholar
  60. 60.
    Post, R. B., and H. W. Leibowitz. The effect of convergence on the vestibulo-ocular reflex and implications for perceived movement.Vision Res. 22:461–465, 1982.PubMedCrossRefGoogle Scholar
  61. 61.
    Post, R. B., and H. W. Leibowitz. A revised analysis of the role of efference in motion perception.Perception 14:631–643, 1985.PubMedCrossRefGoogle Scholar
  62. 62.
    Purkinje, J. Über die Scheinbewegungen, welche im subjective Umfang des Gesichtssinnes vorkommen.Bull. naturwissenschaftlichen Sekt. Schlesischen Gesellschafft V: 9–10, 1825b.Google Scholar
  63. 63.
    Roelofs, C. O. Optische Localisation.Arch. Augenheikunde 109:395–415, 1935.Google Scholar
  64. 64.
    Sedgwick, H. A., and L. K. Festinger. Eye movements efference, and visual perception. In:Eye Movements and Psychological Processes, edited by R. A. Monty and J. W. Senders. Hillsdale, NJ: Erlbaum, 1976, pp. 29–43.Google Scholar
  65. 65.
    Shebilske, W. Visuomotor coordination in visual direction and position constances. In:Stability and Constancy in Visual Perception, edited by W. Epstein. New York: Wiley, 197, pp. 23–69.Google Scholar
  66. 66.
    Shebilske, W. Visual direction illusions in everyday situations: Implications for sensorimotor and ecological theories. In:Eye Movements: Cognition and Visual Perception, edited by D. Fisher, R. Monty, and J. Senders. Hillsdale, NJ: Erlbaum, 1981, pp. 95–110.Google Scholar
  67. 67.
    Shebilske, W. Baseball batters support an ecological efference mediation theory of natural event perception.Acta Psychol. 63:117–131, 1986.CrossRefGoogle Scholar
  68. 68.
    Sherrington, C. S. Further note on the sensory nerves of the eye muscles.Proc. R. Soc. 64:120–121, 1898.Google Scholar
  69. 69.
    Sherrington, C. S. Observations on the sensual role of the proprioceptive nerve supply of the extrinsic ocular muscles.Brain 41:332–343, 1918.CrossRefGoogle Scholar
  70. 70.
    Siebeck, R. Wahrnehmungsstörung und Störungswahrnehmung bei Augemuskellähmungen.Albrecht Von Graefes Arch. Opthalmol. 155:26–34, 1954.Google Scholar
  71. 71.
    Sperry, R. W. Neural basis of the spontaneous optokinetic response produced by visual inversion.J. Comp. Physiol. Psych. 43:482–489, 1950.CrossRefGoogle Scholar
  72. 72.
    Stark, L., and B. Bridgeman. Role of corollary discharge in space constancy.Percept. Psychophysics. 34:371–380, 1983.Google Scholar
  73. 73.
    Steinbach, M. J. Proprioceptive knowledge of eye position.Vision Res. 10:1737–1744, 1987.CrossRefGoogle Scholar
  74. 74.
    Steinbach, M. J., and D. R. Smith. Spatial localization after strabismus surgery: evidence for inflow.Science 213: 1407–1409, 1981.PubMedCrossRefGoogle Scholar
  75. 75.
    Stevens, J. K., R. C. Emerson, G. L. Gerstein, T. Kallos, G. R. Neufeld, C. W. Nichols, and A. C. Rosenquist. Paralysis of the awake human: visual perceptions.Vision Res. 16:93–98, 1976.PubMedCrossRefGoogle Scholar
  76. 76.
    Stoper, A. E., and M. M. Cohen. Judgments of eye level in light and in darkness.Percept. Psychophysiol. 37:311–316, 1986.Google Scholar
  77. 77.
    Teuber, H.-L. Perception. In:Handbook of Physiology, vol. 3, sect. 1,Neurophysiology, edited by J. Field and H. W. Magoun. Washington, DC: American Physiological Society, 1960, pp. 1595–1668.Google Scholar
  78. 78.
    Velay, J., R. Roll, G. Lennerstrand, and J. P. Roll. Eye proprioception and visual localization in humans: influence of ocular dominance and visual context.Vision Res. 34: 2169–2176, 1994.PubMedCrossRefGoogle Scholar
  79. 79.
    von Holst, E., and H. Mittelstaedt. Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie.Naturwissenschaften. 37:464–476, 1950. (English translation inThe Behavioral Physiology of Animals and Man. London: Methuen, 1973, pp. 139–173.)CrossRefGoogle Scholar
  80. 80.
    von Uexküll, J.Theoretische Biologie. Berlin: Patel, 1920.Google Scholar
  81. 81.
    von Uexküll, J.Theoretische Biologie (second edition). Berlin: Springer-Verlag, 1928.Google Scholar
  82. 82.
    Wong, E., and A. Mack. A. Saccadic programming and perceived location.Acta Psychol. 48:123–131, 1981.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 1995

Authors and Affiliations

  • Bruce Bridgeman
    • 1
  1. 1.Program in Experimental PsychologyUniversity of California, Santa CruzSanta Cruz

Personalised recommendations