Annals of Biomedical Engineering

, Volume 23, Issue 3, pp 247–256 | Cite as

Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endothelial cellsin vitro

  • R. Sampath
  • G. L. Kukielka
  • C. W. Smith
  • S. G. Eskin
  • L. V. McIntire
Research Articles


Extensive monocyte recruitment is an early phenomenon associated with the development of atherosclerotic lesions, suggesting an active role for the involvement of adhesion receptors expressed by endothelial cells. In this study we describe the contribution of hemodynamic shear forces in regulating the expression of a few of the monocyte adhesion receptors, including intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin on endothelial cells. A parallel plate flow chamber and recirculating flow loop device was used to expose human umbilical vein endothelial cells (HUVECs) to different levels of shear (2–25 dyn/cm2). Subsequently the cells were analyzed either for shear induced changes in the mRNA levels of adhesion receptors by Northern blot analyses or for changes in the surface expression of ICAM-1 using flow cytometry. Results from the fluorescence analysis showed a transient increase in the surface expression of ICAM-1, 12 hr after exposure to 25 dyn/cm2 shear, returning to basal levels within 24 hr. This was quite different from the time dependent response of ICAM-1 to lipopolysaccharide (LPS), where ICAM-1 expression was maximally induced 18–24 hr poststimulus. ICAM-1 mRNA level appeared slightly elevated after exposure to shear for 1 hr, compared to basal values, but dropped below basal levels within 6 hr. This biphasic response was seen irrespective of the magnitude of applied shear stress. VCAM-1 mRNA expression, in contrast, decreased below the baseline expression within an hour after onset of flow, and appeared to be considerably down-regulated within 6 hr. After exposure to shear for 24 hr no increase in mRNA levels could be detected for either molecule, at any shear magnitude. E-selectin mRNA was less responsive to shear stress, especially at the lower magnitudes of shear. After an hour of exposure to flow E-selectin mRNA level appeared slightly reduced compared with control levels, but it remained at this level even after 6 hr of flow. These results indicate that the expression of adhesion receptors is sensitive to local shear stresses in a manner that is molecule specific in the short term even though prolonged exposure to flow results in similar down-regulation for both ICAM-1 and VCAM-1.


ICAM-1 VCAM-1 Selectins Flow Atherosclerosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbassi, O. A., C. L. Lane, S. Krater, T. K. Kishimoto, D. C. Anderson, L. V. McIntire, and C. W. Smith. Canine neutrophil margination mediated by lectin adhesion molecule-1in vitro.J. Immunol. 147(7):2107–2115, 1991.PubMedGoogle Scholar
  2. 2.
    Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronory arteries.Circ. Res. 66:1045–1066, 1990.PubMedGoogle Scholar
  3. 3.
    Atherton, A., and G. V. R. Born. Quantitative investigation of the adhesiveness of circulating polymorphonuclear leukocytes to blood vessel walls.J. Physiol. 233:157–165, 1973.PubMedGoogle Scholar
  4. 4.
    Bevilacqua, M. P., J. S. Pober, D. L. Mendrick, R. S. Cotran, and M. A. Gimbrone Jr. Identification of an inducible endothelial-leukocyte adhesion molecule.Proc. Natl. Acad. Sci. USA 84(24):9238–9242, 1987.PubMedCrossRefGoogle Scholar
  5. 5.
    Chomczynski, P., and N. Sacchi. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction.Anal. Biochem. 162:156–159, 1987.PubMedCrossRefGoogle Scholar
  6. 6.
    Davies, M. J., N. Woolf, P. M. Rowles, and J. Pepper. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries.Br. Heart J. 60(6):459–464, 1988.PubMedGoogle Scholar
  7. 7.
    Dewey Jr., C. F., S. R. Bussolari, M. A. Gimbrone Jr., and P. F. Davis. The dynamic response of vascular endothelial cells to fluid shear stress.J. Biomech. Eng. 103:177–185, 1981.PubMedGoogle Scholar
  8. 8.
    Diamond, S. L., J. B. Sharefkin, C. Diffenbach, K. Frasier-Scott, L. V. McIntire, and S. G. Eskin. Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress.J. Cell. Physiol. 143:364–371, 1990.PubMedCrossRefGoogle Scholar
  9. 9.
    Dichek, D., and T. Quertermous. Variability in messenger RNA levels in human umbilical vein endothelial cells of different lineage and time in culture.In Vitro Cell. Dev. Biol. 25:289–292, 1989.PubMedGoogle Scholar
  10. 10.
    Dustin, M. I., R. Rothlein, A. K. Bhan, C. A. Dinarello, and T. A. Springer. Induction by IL-1 and IFN-γ. tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1).J. Immunol. 137(1):245–254, 1986.PubMedGoogle Scholar
  11. 11.
    Dustin, M. I., and T. A. Springer. LFA-1 interaction with ICAM-1 is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells.J. Cell Biol. 107: 321–331, 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Faruqi, R., and P. E. DiCorleto. Mechanisms of monocyte recruitment and accumulation.Br. Heart J. 69(Suppl.):S19-S29, 1993.PubMedGoogle Scholar
  13. 13.
    Frangos, J. A., S. G. Eskin, L. V. McIntire, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells.Science 227:1477–1479, 1985.PubMedCrossRefGoogle Scholar
  14. 14.
    Gibson, C. M., L. Diaz, K. Kandarpa, F. M. Sacks, R. C. Pasternack, T. Sandor, C. Feldman, and P. H. Stone. Relation vessel wall shear stress to atherosclerosis progression in human coronary arteries.Arterioscler Thromb. 13: 310–315, 1993.PubMedGoogle Scholar
  15. 15.
    Glagov, S., C. K. Zarins, D. P. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis.Arch. Pathol. Lab. Med. 112:1018–1031, 1988.PubMedGoogle Scholar
  16. 16.
    Hsieh, H. J., N. Q. Li, and J. A. Frangos. Pulsatile and steady flow induces c-for expression in human endothelial cells.J. Cell. Physiol. 154(1):143–151, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Iademarco, M. F., J. L. Barks, and D. C. Dean. Regulation of vascular cell adhesion molecule-1 expression by IL-4 and TNF-α in cultured endothelial cells.J. Clin. Invest. 95:264–271, 1995.PubMedGoogle Scholar
  18. 18.
    Ives, C. L., S. G. Eskin, and L. V. McIntire. Mechanical effects on endothelial cell morphology:in vitro assessment.In Vitro Cell. Dev. Biol. 22(9):500–507, 1986.PubMedGoogle Scholar
  19. 19.
    Konkle, B. A., and D. Ginsburg. The addition of endothelial cell growth factor and heparin to human umbilical vein endothelial cultures decreases plasminogen activator inhibitor-1 expression.J. Clin. Invest. 82:579–585, 1988.PubMedGoogle Scholar
  20. 20.
    Langille, B. L., and S. L. Adamson. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbit and mice.Circ. Res. 48:481–488, 1981.PubMedGoogle Scholar
  21. 21.
    Lawrence, M. B., C. W. Smith, S. G. Eskin, and L. V. McIntire. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium.Blood 75(1): 227–237, 1990.PubMedGoogle Scholar
  22. 22.
    Lawrence, M. B., and T. A. Springer. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins.Cell 65(5):859–873, 1991.PubMedCrossRefGoogle Scholar
  23. 23.
    Maniatis T., E. F. Fritsch, and J. Sambrook. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989.Google Scholar
  24. 24.
    McArthur, M. M., I. R. Macgregor, C. V. Prowse, N. R. Hunter, J. Dawes, and D. S. Pepper. The use of human endothelial cells cultured in flat wells and on microcarrier beads to assess tissue plasminogen activator and factor VIII related antigen release.Thromb. Res. 41:581–587, 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    McEver, R. P. Selectins: novel receptors that mediate leukocyte adhesion during inflammation.Thromb. Haemost. 65(3):223–228, 1991.PubMedGoogle Scholar
  26. 26.
    Nagel, T., N. Resnick, W. J. Atkinson, C. F. Dewey, Jr., and M. A. Gimbrone Jr. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells.J. Clin. Invest. 94:885–891, 1994.PubMedGoogle Scholar
  27. 27.
    Nerem, R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis.J. Biomech. Eng. 114(3):274–282, 1992.PubMedGoogle Scholar
  28. 28.
    Nerem, R. M., M. J. Levesque, and J. F. Cornhill. Vascular endothelial morphology as an indicator of the pattern of blood flow.J. Biomech. Eng. 103:172–175, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Nollert, M. U., S. L. Diamond, and L. V. McIntire. Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism.Biotech. Bioeng. 38:588–602, 1991.CrossRefGoogle Scholar
  30. 30.
    Nollert, M. U., N. J. Panaro, and L. V. McIntire. Regulation of genetic expression in shear stress stimulated endothelial cells.Ann. N.Y. Acad. Sci. 665:94–104, 1992.PubMedCrossRefGoogle Scholar
  31. 31.
    Ohtsuka, A., J. Ando, R. Korenaga, A. Kamiya, S. N. Toyama, and M. Miyasaka. The effect of flow on the expression of vascular cell adhesion molecule-1 by cultured mouse endothelial cells.Biochem. Biophys. Res. Commun. 193(1):303–310, 1993.PubMedCrossRefGoogle Scholar
  32. 32.
    Perry, M. A., and D. N. Granger. Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules.J. Clin. Invest. 87:1798–1804, 1991.PubMedGoogle Scholar
  33. 33.
    Ranjan, V., and S. L. Diamond. Fluid shear stress induces synthesis and nuclear localization of c-fos in cultured human endothelial cells.Biochem. Biophys. Res. Commun. 196(1): 79–84, 1993.PubMedCrossRefGoogle Scholar
  34. 34.
    Resnick, N., T. Collins, W. Atkinson, D. T. Bonthorn, C. F. Dewey, and M. A. Gimbrone Jr. Platelet derived growth factor B (PDGF-B) chain promoter contains a cisacting fluid shear-stress-responsive element.Proc. Natl. Acad. Sci. 90:4591–4595, 1993.PubMedCrossRefGoogle Scholar
  35. 35.
    Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s.Nature 362:801–809, 1993.PubMedCrossRefGoogle Scholar
  36. 36.
    Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured Bovine aortic endothelial cells exposed to shear stress.Arteriosclerosis 7:276–286, 1987.PubMedGoogle Scholar
  37. 37.
    Schwartz, C. J., A. J. Valente, and E. A. Sparque. A modern view of atherogenesis.Am. J. Cardiol. 71:9B-14B, 1993.PubMedCrossRefGoogle Scholar
  38. 38.
    Shyy, J. Y., and S. Chien. Phorbol ester TPA-responsive element (TRE) is a functional shear stress responsive element.Ann. Biomed. Eng. 22(1):40, 1994.Google Scholar
  39. 39.
    Shyy, Y. J., H. J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium.Proc. Natl. Acad. Sci. USA 91:4678–4682, 1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Smith, C. W., S. D. Marlin, R. Rothlein, C. Toman, and D. C. Anderson. Cooperative interactions of LFA-1 and Mac-1 with ICAM-1 in facilitating adherence and transendothelial migration of human neutrophilsin vitro.J. Clin. Invest. 83:2008–2017, 1989.PubMedCrossRefGoogle Scholar
  41. 41.
    Sterpetti, A. V., A. Cucina, A. R. Morena, S. D. Donna, L. S. D'Angelo, A. Cavallaro, and S. Stpia. Shear stress increases the release of interleukin-1 and interleukin-6 by aortic endothelial cells.Surgery 114:911–914, 1993.PubMedGoogle Scholar
  42. 42.
    Tso, J. Y., X. H. Sun, T. H. Kao, K. S. Reece, and R. Wu. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs.Nucl. Acids Res. 13:2485–2502, 1985.PubMedCrossRefGoogle Scholar
  43. 43.
    van Hinsbergh, V. W. M., D. Binnema, M. A. Scheffer, E. D. Sprengers, T. Kooistra, and D. C. Rijken. Production of plasminogen activators and inhibitor by serially propogated endothelial cells from adult human blood vessels.Arteriosclerosis 7:389–400, 1987.PubMedGoogle Scholar
  44. 44.
    Walpola, P. L., A. I. Gotlieb, M. I. Cybulsky and B. L. Langille. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress.Arterioscler. Thromb. 15:2–10, 1995.Google Scholar
  45. 45.
    Warner, S. J., K. R. Auger, and P. J. Libby. Interleukin 1 induces interleukin 1. II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells.J. Immunol. 139(6):1911–1917, 1987.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 1995

Authors and Affiliations

  • R. Sampath
    • 1
  • G. L. Kukielka
    • 2
    • 3
  • C. W. Smith
    • 2
  • S. G. Eskin
    • 4
  • L. V. McIntire
    • 1
  1. 1.Cox Laboratory for Biomedical EngineeringRice UniversityHouston
  2. 2.Section of Leukocyte Biology, Department of PediatricsBaylor College of MedicineHouston
  3. 3.Section of Cardiovascular Sciences, Department of MedicineBaylor College of MedicineHouston
  4. 4.Department of Cell BiologyTexas Biotechnology CorporationHouston

Personalised recommendations