Annals of Biomedical Engineering

, Volume 15, Issue 3–4, pp 331–346 | Cite as

Left ventricular external constraint: Relationship between pericardial, pleural and esophageal pressures during positive end-expiratory pressure and volume loading in dogs

  • Iris Kingma
  • Otto A. Smiseth
  • Michael A. Frais
  • Eldon R. Smith
  • John V. Tyberg


Left ventricular (LV) diastolic filling is limited by the constraining effects exerted by the pericardium (PE) and the lung/chest wall. The aim of the present study was to assess the validity of various estimates of external cardiac constraint, compared to pericardial surface pressure (Ppe) measured lateral to the LV myocardium. In nine anesthetized dogs we measured Ppe, pleural surface pressure (Ppl) (lateral to the pericardium) and esophageal pressure (Pes) under conditions of volume loading and positive end-expiratory pressure (PEEP). We measured Ppe and Ppl with flat, liquidcontaining silastic rubber balloons and Pes with an air-containing cylindrical balloon. After instrumentation, the chest was resealed and continuous suction (−5 mm Hg, 1 mm Hg=0.133 kPa) was maintained. Volume loading with incremental intravenous infusions of saline was used to increase LV end-diastolic pressure to 20–25 mm Hg. PEEP of 0, 10 and 20 mm Hg were applied at baseline and after each increment of volume loading. At low volume, increases in PEEP caused simultaneous increases in LV end-diastolic pressure (P<0.01) and in Ppe (P<0.0001) but a reduction in transmural LV pressure (P<0.0005). Ppl and Pes both increased with PEEP (P<0.001 and P<0.01, respectively). However, Ppe always exceeded Ppl, while Pes remained at only approximately 1/3 Ppl throughout. Volume loading caused a significant increase in Ppe (P<0.0001) and a smaller, but significant increase in Ppl (P<0.05). Pes remained unchanged during volume loading. Thus external cardiac constraint increased markedly during volume loading and PEEP as evidenced by a marked elevation of Ppe. Both Ppl and Pes markedly underestimated this increase. Therefore, calculation of transmural LV pressure by subtracting pleural or esophageal pressure from intracavitary pressure can lead to overestimation of LV preload. The decrease in cardiac output during PEEP occurs secondary to decreased preload, i.e. decreased transmural pressure and end-diastolic dimension. Analysis of performance using cardiac function curves does not suggest a change in contractility with PEEP.


External cardiac constraint Left ventricular transmural pressure Pericardial surface pressure Pleural surface pressure Esophageal pressure Positive endexpiratory pressure 



Left ventricle


Right ventricle


End-diastolic pressure


Pericardial surface pressure


Pleural surface pressure


Esophageal pressure


Positive end-expiratory pressure


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agostoni, E. Mechanics of the pleural space. In:Handbook of Physiology, Volume III, The respiratory system, edited by A.P. Fishman, P.T. Macklem, J. Mead and S.R. Geiger, Bethesda: American Physiological Society, 1986, pp. 531–558.Google Scholar
  2. 2.
    Braunwald, E. and J. Ross. The ventricular end-diastolic pressure. Appraisal of its value in the recognition of ventricular failure in man. (Editorial)Am. J. Med. 34:147–150, 1963.PubMedCrossRefGoogle Scholar
  3. 3.
    Calvin, J.E., A.A. Driedger and W.J. Sibbald. Positive end-expiratory pressure does not depress left ventricular function in patients with pulmonary edema.Am. Rev. Resp. Dis. 124:121–128, 1981.PubMedGoogle Scholar
  4. 4.
    Cassidy, S.S. and J.H. Mitchell. Effects of positive pressure breathing on right and left ventricular preload and afterload.Fed. Proc. 40:2178–2181, 1981.PubMedGoogle Scholar
  5. 5.
    Cassidy, S.S., J.H. Mitchell and R.L. Johnson. Dimensional analysis of RV and LV during positive pressure ventilation in dogs.Am. J. Physiol. 242:H549–H556, 1982.PubMedGoogle Scholar
  6. 6.
    Cournand, A., H.L. Motley, L. Werko and D.W. Richards. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man.Am. J. Physiol. 152:162–174, 1948.PubMedGoogle Scholar
  7. 7.
    Craven, K.D. and L.D.H. Wood. Extrapericardial and esophageal pressures with positive end-expiratory pressures in dogs.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 51:798–805, 1981.Google Scholar
  8. 8.
    Dhainaut, J.F., C. Bricard, J.J. Monsallier, O. Salmon, J. Bons, V. Fourestie, B. Schlemmer and A. Carli. Left ventricular contractility using isovolumic phase indices during positive end-experatory pressure in ARDS patients.Crit. Care. med. 10:631–635, 1982.PubMedCrossRefGoogle Scholar
  9. 9.
    Ditchey, R.V., D. Costello and R. Shabetai. Effects of airway pressure and lung volume on left ventricular transmural pressure-volume relationship in humans.Am. Heart. J. 106:46–51, 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    Fewell, J.E., D.R. Abendschein, C.J. Carlson, E. Rapaport and J.F. Murray. Mechanism of decreased right and left ventricular end-diastolic volumes during CPPV in dogs.Circ. Res. 47:467–472, 1980.PubMedGoogle Scholar
  11. 11.
    Fewell, J.E., D.R. Abendschein, C.J. Carlson, J.F. Murray and E. Rapaport. Continuous positive pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog.Circ. Res. 46:125–132, 1980.PubMedGoogle Scholar
  12. 12.
    Grindlinger, G.A., T. Utsunomiya, A. Vegas, L.L. Levine, D. Shepro and H.B. Hechtman. Prostaglandin mediation of unstable hemodynamics during lung perfusion.Surgery 92:52–60, 1982.PubMedGoogle Scholar
  13. 13.
    Haynes, J.B., S.D. Carson, W.P. Whitney, G.O. Zerbe, T.M. Hyers and P. Steele. Positive end-expiratory pressure shifts left ventricular diastolic pressure-area curves.J. Appl. Physiol. 48:670–676, 1980.PubMedGoogle Scholar
  14. 14.
    Hobelmann, C.F., D.E. Smith, R.W. Virgilio, A.R. Shapiro and R.M. Peters. Hemodynamic alterations with positive end-expiratory pressure: The contribution of the pulmonary vasculature.J. Trauma 15:951–958, 1975.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoppin, F.G. Jr., I.D. Green and J. Mead. Distribution of pleural surface pleural pressure in dogs.J. Appl. Physiol. 27:863–873, 1969.PubMedGoogle Scholar
  16. 16.
    Jardin, F., J.C. Farcot, L. Boisante, N. Curien, A. Margairaz and J.P. Bourdarias. Influence of PEEP on LV performance.New Engl. J. Med. 304:387–392, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Jardin, F. and J.C. Farcot. Influence de la respiration sous pression positive tele-expiratoire sur la fonction ventriculaire gauche.Nouv. Presse Med. 11:2143–2145, 1982.PubMedGoogle Scholar
  18. 18.
    Kingma, I., J.V. Tyberg and E.R. Smith. Effects of diastolic transseptal pressure gradient on ventricular septal position and motion.Circulation 68:1304–1314, 1983.PubMedGoogle Scholar
  19. 19.
    Lloyd, T.C. Mechanical cardiopulmonary interdependence.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 52:333–339, 1982.Google Scholar
  20. 20.
    Marini, J.J., B.H. Culver and J. Butler. Mechanical effect of lung distension with positive pressure on cardiac function.Am. Rev. Resp. Dis. 124:382–386, 1981.PubMedGoogle Scholar
  21. 21.
    Marini, J.J., B.H. Culver and J. Butler. Effect of positive end-expiratory pressure on canine ventricular function curves.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 51:1367–1384, 1981.Google Scholar
  22. 22.
    Marini, J.J., R. O'Quin, B.H. Culver and J. Butler. Estimation of transmural cardiac pressures during ventilation with PEEP.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 53:1374–1381, 1982.Google Scholar
  23. 23.
    McMahon, S.M., S. Permutt and D.F. Proctor. A model to evaluate pleural surface pressure measuring devices.J. Appl. Physiol. 27:886–891, 1969.PubMedGoogle Scholar
  24. 24.
    Morris, A.L., S.W. Rabkin, B. Ayotte and G.P. Sharma. Role of the pericardium and intact chest wall in the hemodynamic response to positive end-expiratory pressure.Can. J. Physiol. Pharm. 59:45–52, 1981.Google Scholar
  25. 25.
    Parker, J. and R.B. Case. Normal left ventricular function.Circulation 60:4–12, 1979.PubMedGoogle Scholar
  26. 26.
    Prewitt, R.M. and L.D.H. Wood. Effect of positive end-expiratory pressure on ventricular function in dogs.Am. J. Physiol. 236:H534–H544, 1979.PubMedGoogle Scholar
  27. 27.
    Prewitt, R.M., L. Oppenheimer, J.B. Sutherland and L.D.H. Wood. Effect of positive end-expiratory pressure on left ventricular mechanics in patients with hypoxemic respiratory failure.Anesthesiology 55:409–415, 1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Qvist, J., H. Pontoppidon, R.S. Wilson, E. Lowenson and M.B. Laver. Hemodynamic responses to mechanical ventilation with PEEP. The effect of hypervolemia.Anesthesiology 45:45–55, 1975.CrossRefGoogle Scholar
  29. 29.
    Rabkin, S.W., A.L. Morris, G.P. Sharma and B. Ayotte. Comparison of hemodynamic responses to positive end-expiratory ventilation and pericardial effusion in dogs.Clin. Exp. Pharm. Physiol. 7:183–193, 1980.Google Scholar
  30. 30.
    Rankin, J.S., C.O. Olsen, C.E. Arentzen, G.S. Tyson, G. Maier, P.K. Smith, J.W. Hammon, J.W. Davis, P.A. McHale, R.W. Anderson and D.C. Sabiston. The effects of airway pressure on cardiac function in intact dogs and man.Circulation 66:108–120, 1982.PubMedGoogle Scholar
  31. 31.
    Robotham, J.L., W. Lixfield, D. Holland, D. MacGregor, B. Bromberger-Barnea, S. Permutt and J.L. Rabson. The effects of positive end-expiratory pressure on right and left ventricular performance.Am. Rev. Resp. Dis. 121:677–683, 1981.Google Scholar
  32. 32.
    Robotham, J.L., R.C. Bell, F.R. Badke and M.K. Kindred. Left ventricular geometry during positive end-expiratory pressure in dogs.Crit. Care Med. 13:617–624, 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Santamore, W.P., A.A. Bove and J.L. Heckman. Right and left ventricular pressure-volume response to positive end-expiratory pressure.Am. J. Physiol. 246:H114–H119, 1984.PubMedGoogle Scholar
  34. 34.
    Scharf, S.M., R. Brown, N. Saunders and L.H. Green. Effects of normal and loaded spontaneous inspiration on cardiovascular function.J. Appl. Physiol. 47:582–590, 1979.PubMedGoogle Scholar
  35. 35.
    Scharf, S.M., R. Brown, N. Saunders, L.H. Green and R.H. Ingram. Changes in canine left ventricular size and configuration with positive end-expiratory pressure.Circ. Res. 44:672–678, 1979.PubMedGoogle Scholar
  36. 36.
    Scharf, S.M. and R. Brown. Influence of right ventricle on canine left ventricular function with positive end-expiratory pressure.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 52:254–259, 1982.Google Scholar
  37. 37.
    Schreuder, J.J., J.R.C. Jansen and A. Versprille. Hemodynamic effects of PEEP applied as a ramp in normo-, hyper- and hypovolemia.J. Appl. Physiol. 59:1178–1184, 1985.PubMedGoogle Scholar
  38. 38.
    Smiseth, O.A., M.A. Frais, I. Kingma, E.R. Smith and J.V. Tyberg. Assessment of pericardial constraint in dogs.Circulation 77:158–164, 1985.Google Scholar
  39. 39.
    Smiseth, O.A., M.A. Frais, I. Kingma, A.V.M. White, M.L. Knudtson, J.M. Cohen, D.E. Manyari, E.R. Smith and J.V. Tyberg. Assessment of pericardial constraint: The relation between ventricular filling pressure and pericardial pressure measured after pericardiocentesis.J. Am. Coll. Cardiol. 7:307–314, 1986.PubMedCrossRefGoogle Scholar
  40. 40.
    Stinnett, H.O. Altered cardiovascular reflex responses during positive pressure breathing.Fed. Proc. 40:2182–2187, 1981.PubMedGoogle Scholar
  41. 41.
    Tyberg, J.V., G.C. Taichman, E.R. Smith, N.W.S. Douglas, O.A. Smiseth and W.J. Keon. The relationship between pericardial pressure and right atrial pressure: An intraoperative study.Circulation 73:428–432, 1986.PubMedGoogle Scholar
  42. 42.
    Utsonomiya, T., M.M. Krausz, B. Dunham, D. Shepro and H.B. Hechtman. Depression of myocardial ATP-ase activity by plasma obtained during positive end-expiratory pressure.Surgery 91:322–328, 1982.Google Scholar
  43. 43.
    Van Trigt, P., T.L. Spray, M.K. Pasque, R.B. Peyton, G.L. Pellom, C.M. Christian, L. Fagraeus and A.S. Wechsler. The effect of PEEP on left ventricular diastolic dimensions and systolic performance following myocardial revascularization.Ann. Thor. Sur. 6:585, 1982.CrossRefGoogle Scholar
  44. 44.
    Wallis, T.W., J.L. Robotham, R. Compean and M.K. Kindred. Mechanical heart-lung interaction with positive end-expiratory pressure.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 54:1039–1047, 1983.Google Scholar
  45. 45.
    Wise, R.A., J.L. Robotham, B. Bromberger-Barnea and S. Permutt. Effect of Positive end-expiratory pressure on left ventricular function in right heart bypassed dogs.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 51:541–546, 1981.Google Scholar

Copyright information

© Pergamon Journal Ltd 1987

Authors and Affiliations

  • Iris Kingma
    • 1
  • Otto A. Smiseth
    • 1
  • Michael A. Frais
    • 1
  • Eldon R. Smith
    • 1
  • John V. Tyberg
    • 1
  1. 1.Department of Medicine and Medical PhysiologyThe University of Calgary, Health Sciences CentreCalgaryCanada

Personalised recommendations