Theoretical and Mathematical Physics

, Volume 112, Issue 3, pp 1192–1198 | Cite as

Non-Archimedean space of states in the polymerization model

  • S. V. Kozyrev
Article
  • 28 Downloads

Abstract

Polymerization kinetics generated by recombination and degradation reactions of polymer chains is considered. It is shown that some space of the excitations over the free energy minimum admits the natural topology of the 2-adic disc. Applications to the theory of biological evolution are discussed.

Keywords

Free Energy Minimum Ultrametric Space Polymerization Kinetic Spin Glass Model Linear Polymer Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Avetisov and V. I. Goldanskii,Proc. Nat. Acad. Sci. USA,93, 11435 (1996).CrossRefADSGoogle Scholar
  2. 2.
    L. A. Blumenfeld,Problems of Biological Physics, Springer, Berlin-Heidelberg-New York (1981).Google Scholar
  3. 3.
    S. A. Kauffman,The Origins of Order, Oxford Univ., Oxford (1993).Google Scholar
  4. 4.
    A. Yu. Grosberg,Vysokomoleculyarnye Soedineniya A,34, 174 (1992).Google Scholar
  5. 5.
    M. Eigen, J. McCaskill, and P. Shuster,J. Phys. Chem.,92, 6881 (1988).CrossRefGoogle Scholar
  6. 6.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov,p-Adic Analysis and Mathematical Physics, World Scientific, Singapore-New Jersey-London-Hong Kong (1994).Google Scholar
  7. 7.
    G. Parisi, “Spin glasses and the optimization problem without replicas,” in:Field Theory. Disorder, and Simulations (G. Parisi, ed.), World Scientific, Singapore (1992).Google Scholar
  8. 8.
    S. V. Kozyrev,Theor. Math. Phys.,110, 265 (1997).MATHMathSciNetGoogle Scholar
  9. 9.
    L. Accardi and Y. G. Lu. “Wigner semicircle low in quantum electrodynamics,” Preprint of the Volterra Center No. 126 (1992):Commun. Math. Phys.,168, 296 (1996).Google Scholar
  10. 10.
    I. Ya. Aref'eva and I. V. Volovich, “The master field for QCD andq-deformed quantum field theory,” Preprint SMI-25-95;Nucl. Phys. B,462, 600 (1996).MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    G. Parisi, “On the natural emergence of tree-like structures in complex systems,” in:Perspectives on Biological Complexity (O. T. Solbrig and G. Nicolis, eds.), IUBS (1991); G. Parisi (ed.), in:Field Theory, Disorder, and Simulations, World Scientific (1992).Google Scholar
  12. 12.
    R. Rammal, G. Toulouse, and M. A. Virasoro,Rev. Mod. Phys.,58, 765 (1986).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M. Mezard, G. Parisi, N. Sourlas, G. Toulouse, and M. A. Virasoro,J. Phys. Lett.,45, 843 (1984).MathSciNetGoogle Scholar
  14. 14.
    A. Lima-de-Faria,Evolution Without Selection: Form and Function by Autoevolution, Elsevier, Amsterdam-New York-Oxford (1988).Google Scholar
  15. 15.
    P. L. Blatz and A. V. Tobolsky,J. Phys. Chem.,49, 77 (1945).CrossRefGoogle Scholar
  16. 16.
    M. Aizenman and T. A. Bak,Commun. Math. Phys.,65, 203 (1979).MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    J. L. Lebowitz and E. W. Montroll (eds.),Nonequilibrium Phenomena I. The Boltzmann Equation (Studies in Statistical Machanics, Vol. X), North-Holland, Amsterdam-New York-Oxford (1983).MATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. V. Kozyrev
    • 1
  1. 1.Institute for Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations