Advertisement

Theoretical and Mathematical Physics

, Volume 112, Issue 3, pp 1097–1103 | Cite as

Integrable equations on ℤ-graded Lie algebrasLie algebras

  • I. Z. Golubchik
  • V. V. Sokolov
Article

Abstract

We consider evolution systems admitting L-A-pairs in ℤ-graded Lie algebras. We relate several hierarchies of integrable systems to a single L operator. The different hierarchies corresponds to different decompositions of the zero component of a ℤ-graded algebra into the sum of two subalgebras. This allows us to construct new examples of multi-component integrable system following the Burgers, mKdV, NLS and Boussinesq equations.

Keywords

Moody Algebra Jordan Pair Full Matrix Algebra Nonlinear Schr6dinger Equation Boussinesq Equation Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Drinfel'd and V. V. Sokolov, “Lie algebras and Korteweg-de Vries-type equations,” in:Modern Problems in Mathematics, Vol. 24, VINITI, Moscow (1984), p. 81.Google Scholar
  2. 2.
    A. P. Fordy and P. P. Kulish,Commun. Math. Phys.,89, 427 (1983).MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    C. Athorne and A. P. Fordy,J. Phys. A,20, 1377 (1987).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    V. A. Marchenko,Nonlinear Equations and Operator Algebras [in Russian], Naukova Dumka, Kiev (1986).MATHGoogle Scholar
  5. 5.
    S. I. Svinolupov,Phys. Lett. A,135, 32 (1987).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    S. I. Svinolupov,Commun. Math. Phys. 143, 559 (1992).MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. I. Svinolupov,Funct. Anal. Appl.,27, 257 (1993).CrossRefMathSciNetGoogle Scholar
  8. 8.
    S. I. Svinolupov and V. V. Sokolov,Theor. Math. Phys.,100, 959 (1994).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. I. Svinolupov and V. V. Sokolov,Theor. Math. Phys.,108, 1160 (1996).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. F. de Groot, T. J. Hollowood and J. L. Miramontes,Commun. Math. Phys. 145, 57 (1992).MATHCrossRefADSGoogle Scholar
  11. 11.
    A. A. Belavin and V. G. Drinfeld,Funkts. Anal. Prilozhen,16, No. 3, 1–29 (1982).MathSciNetGoogle Scholar
  12. 12.
    M. A. Semenov-Tyan-Shanskii,Funkts. Anal. Prilozhen,17, No. 4, 17 (1983).MathSciNetGoogle Scholar
  13. 13.
    I. Z. Golubchik and V. V. Sokolov,Theor. Math. Phys.,110, 267 (1997).MATHMathSciNetGoogle Scholar
  14. 14.
    V. V. Sokolov and S. I. Svinolupov,Acta Appl. Math.,41, 323 (1995).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    F. A. Khalilov and E. Ya. Khruslov,Inverse Probl.,6, 193 (1990).MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    O. V. Mel'nikov, V. N. Remeslennikov, V. A. Roman'kov, L. A. Skornyakov and I. P. Shestakov,General Algebra [in Russian], Vol. 1, Nauka, Moscow (1990).MATHGoogle Scholar
  17. 17.
    A. V. Mikhailov, A. B. Shabat and R. I. Yamilov,Russ. Math. Surv.,42, No. 4, 1 (1987).CrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Medina,C. R. Acad. Sc. Paris, Ser. A,286, 173 (1978).MATHMathSciNetGoogle Scholar
  19. 19.
    B. A. Dubrovin and S. P. Novikov,Usp. Mat. Nauk,44, No. 6, 29 (1989).MathSciNetGoogle Scholar
  20. 20.
    V. V. Sokolov,Russ. Math. Surv.,43, No. 5, 165 (1988).MATHCrossRefGoogle Scholar
  21. 21.
    S. I. Svinolupov and V. V. Sokolov,Russ. Math. Surv.,47, No. 3, 127 (1992).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • I. Z. Golubchik
    • 1
  • V. V. Sokolov
    • 1
  1. 1.Mathematical Institute, Ufa Scientific CenterRusian Academy of SciencesUfaRussia

Personalised recommendations