Theoretical and Mathematical Physics

, Volume 112, Issue 3, pp 1097–1103 | Cite as

Integrable equations on ℤ-graded Lie algebrasLie algebras

  • I. Z. Golubchik
  • V. V. Sokolov


We consider evolution systems admitting L-A-pairs in ℤ-graded Lie algebras. We relate several hierarchies of integrable systems to a single L operator. The different hierarchies corresponds to different decompositions of the zero component of a ℤ-graded algebra into the sum of two subalgebras. This allows us to construct new examples of multi-component integrable system following the Burgers, mKdV, NLS and Boussinesq equations.


Moody Algebra Jordan Pair Full Matrix Algebra Nonlinear Schr6dinger Equation Boussinesq Equation Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Drinfel'd and V. V. Sokolov, “Lie algebras and Korteweg-de Vries-type equations,” in:Modern Problems in Mathematics, Vol. 24, VINITI, Moscow (1984), p. 81.Google Scholar
  2. 2.
    A. P. Fordy and P. P. Kulish,Commun. Math. Phys.,89, 427 (1983).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    C. Athorne and A. P. Fordy,J. Phys. A,20, 1377 (1987).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    V. A. Marchenko,Nonlinear Equations and Operator Algebras [in Russian], Naukova Dumka, Kiev (1986).zbMATHGoogle Scholar
  5. 5.
    S. I. Svinolupov,Phys. Lett. A,135, 32 (1987).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    S. I. Svinolupov,Commun. Math. Phys. 143, 559 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. I. Svinolupov,Funct. Anal. Appl.,27, 257 (1993).CrossRefMathSciNetGoogle Scholar
  8. 8.
    S. I. Svinolupov and V. V. Sokolov,Theor. Math. Phys.,100, 959 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. I. Svinolupov and V. V. Sokolov,Theor. Math. Phys.,108, 1160 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. F. de Groot, T. J. Hollowood and J. L. Miramontes,Commun. Math. Phys. 145, 57 (1992).zbMATHCrossRefADSGoogle Scholar
  11. 11.
    A. A. Belavin and V. G. Drinfeld,Funkts. Anal. Prilozhen,16, No. 3, 1–29 (1982).MathSciNetGoogle Scholar
  12. 12.
    M. A. Semenov-Tyan-Shanskii,Funkts. Anal. Prilozhen,17, No. 4, 17 (1983).MathSciNetGoogle Scholar
  13. 13.
    I. Z. Golubchik and V. V. Sokolov,Theor. Math. Phys.,110, 267 (1997).zbMATHMathSciNetGoogle Scholar
  14. 14.
    V. V. Sokolov and S. I. Svinolupov,Acta Appl. Math.,41, 323 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    F. A. Khalilov and E. Ya. Khruslov,Inverse Probl.,6, 193 (1990).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    O. V. Mel'nikov, V. N. Remeslennikov, V. A. Roman'kov, L. A. Skornyakov and I. P. Shestakov,General Algebra [in Russian], Vol. 1, Nauka, Moscow (1990).zbMATHGoogle Scholar
  17. 17.
    A. V. Mikhailov, A. B. Shabat and R. I. Yamilov,Russ. Math. Surv.,42, No. 4, 1 (1987).CrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Medina,C. R. Acad. Sc. Paris, Ser. A,286, 173 (1978).zbMATHMathSciNetGoogle Scholar
  19. 19.
    B. A. Dubrovin and S. P. Novikov,Usp. Mat. Nauk,44, No. 6, 29 (1989).MathSciNetGoogle Scholar
  20. 20.
    V. V. Sokolov,Russ. Math. Surv.,43, No. 5, 165 (1988).zbMATHCrossRefGoogle Scholar
  21. 21.
    S. I. Svinolupov and V. V. Sokolov,Russ. Math. Surv.,47, No. 3, 127 (1992).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • I. Z. Golubchik
    • 1
  • V. V. Sokolov
    • 1
  1. 1.Mathematical Institute, Ufa Scientific CenterRusian Academy of SciencesUfaRussia

Personalised recommendations