Documenta Ophthalmologica

, Volume 94, Issue 3, pp 223–237 | Cite as

Early macular dysfunction detected by focal electroretinographic recording in non-insulin-dependent diabetics without retinopathy

  • Micheline C. Deschênes
  • Stuart G. Coupland
  • Stuart A. Ross
  • Gordon H. Fick


The focal electroretinogram, which measures the functional integrity of the distal retina of the macula, was recorded with a hand-held stimulator-ophthalmoscope in 26 eyes from patients with non-insulin-dependent diabetes mellitus with normal fundus photography, and in 52 control eyes of similar age range. Implicit time and amplitude of the responses were studied as a function of the age, glycemic control through glycosylated hemoglobin measurement and duration of diabetes. Implicit time and amplitude were significantly delayed (F=5.05, p=0.028) and reduced (F=11.26, p=0.013) in diabetic patients without diabetic retinopathy compared to control subjects. Moreover, there was a significant relationship between the implicit time (r=0.57, p=0.002) and amplitude (r=−0.65, p=0.0004) with the duration of diabetes but not with hemoglobin Alc. These results strongly suggest an early macular dysfunction in noninsulin-dependent diabetes mellitus before the appearance of diabetic retinopathy.

Key words

diabetic retinopathy focal electroretinogram macula maculopathy non-insulin-dependent diabetes mellitus ischemia 



diabetic retinopathy


glycosylated hemoglobin


non-insulin-dependent diabetes mellitus


Southern Alberta Study of Diabetic Retinopathy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boschi MC, Frosini R, Mencucci R, Sodi A. The influence of early diabetes on the pattern electroretinogram. Doc Ophthalmol 1989; 71: 369–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Falsini B, Porciatti V, Scalia G, Caputo S, Minelia A, Di Leo MAS, Ghirlanda G. Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol 1989; 73: 193–200.PubMedCrossRefGoogle Scholar
  3. 3.
    Caputo S, Di Leo MAS, Falsini B, Ghirlanda G, Porciatti V, Minella A, Greco AV. Evidence for early impairment of macular function with pattern ERG in type 1 diabetic patients. Diabetes Care 1990; 13: 412–8.PubMedGoogle Scholar
  4. 4.
    Di Leo MAS, Falsini B, Caputo S, Ghirlanda G, Porciatti V, Greco AV. Spatial frequency-selective losses with pattern electroretinogram in type 1 (insulin-dependent) diabetic patients without retinopathy. Diabetologia 1990; 726–30.Google Scholar
  5. 5.
    Prager TC, Garcia CA, Mincher CA, Mishra J, Chu Hshuan-Ho. The pattern electroretinogram in diabetes. Am J Ophthalmol 1990; 109: 279–84.PubMedGoogle Scholar
  6. 6.
    Frost-Larsen K, Larsen H-W, Simonsen SE. Oscillatory potential and nyctometry in insulin-dependent diabetics. Acta Ophthalmol 1980; 58: 879–88.CrossRefGoogle Scholar
  7. 7.
    Midena E, Segato T, Giuliano M, Zucchetto M. Macular recovery function (nyctometry) in diabetics without and with retinopathy. Br J Ophthalmol 1990; 74: 106–8.PubMedGoogle Scholar
  8. 8.
    Ghafour IM, Foulds WS, Allan D, McClure E. Contrast sensitivity in diabetic subjects with and without retinopathy. Br J Ophthalmol 1982; 66: 492–5.PubMedGoogle Scholar
  9. 9.
    Della Sala S, Bertoni G, Somazzi L, Stubbe F, Wilkins AJ. Impaired contrast sensitivity in diabetic patients with and without retinopathy: a new technique for rapid assessment. Br J Ophthalmol 1985; 69: 126–42.Google Scholar
  10. 10.
    Sokol S, Moskowitz A, Skarf B, Evans R, Molich M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Opthalmol 1985; 103: 51–4.Google Scholar
  11. 11.
    Trick GL, Burde RM, Gordon MO, Santiago JV, Kilo C. The relationship between hue discrimination and contrast sensitivity deficits in patients with diabetes mellitus. Ophthalmol 1988; 95: 693–8.Google Scholar
  12. 12.
    Kinnear PR, Aspinall PA, Lakowski R. The diabetic eye and color vision. Trans Ophthalmol Soc U K 1972; 92: 69–78.PubMedGoogle Scholar
  13. 13.
    Green FD, Ghafour IM, Allan D, Barrie T, McClure E, Foulds WS. Colour vision of diabetics. Br J Ophthalmol 1985; 69: 533–6.PubMedGoogle Scholar
  14. 14.
    Hardy KJ, Lipton J, Scase MO, Foster DH, Scarpello JHB. Detection of colour vision abnormalities in uncomplicated type 1 diabetic patients with angiographically normal retinas. Br J Ophthalmol 1992; 76: 461–4.PubMedGoogle Scholar
  15. 15.
    Kurtenbach A, Wagner U, Neu A, Schiefer U, Ranke MB, Zrenner E. Brightness matching and colour discrimination in young diabetics without retinopathy. Vision Res 1994; 34: 115–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Constable IJ, Knuiman MW, Welborn TA, Cooper RL, Stanton KM, McCann VJ, Grose GC. Assessing the risk of diabetic retinopathy. Am J Ophthalmol 1984; 97: 53–61.PubMedGoogle Scholar
  17. 17.
    Nathan DM, Singer DE, Godine JE, Hodgson Harrington C, Perlmuter LC. Retinopathy in older type II diabetics. Diabetes 1986; 35: 797–801.PubMedGoogle Scholar
  18. 18.
    Nathan DM, Singer DE, Godine JE, Perlmuter LC. Non-insulin-dependent diabetes in older patients: complications and risk factors. Am J Med 1986; 81: 837–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA 1988; 260: 2864–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu QZ, Pettitt DJ, Hanson RL, Charles MA, Klein R, Bennett PH, Knowler WC. Glycated haemoglobin, plasma glucose and diabetic retinopathy: cross-sectional and prospective analyses. Diabetologia 1993; 36: 428–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Morisaki N, Watanabe S, Kobayashi J, Kanzaki T, Takahashi K, Yokote K, Tezuka M, Tashiro J, Inadera H, Saito Y, Yoshida S, Shigemura K. Diabetic control and progression of retinopathy in elderly patients: five-year follow-up study. J Am Geriatr Soc 1994; 42: 142–5.PubMedGoogle Scholar
  22. 22.
    West KM, Erdreich LJ, Stoher JA. A detalled study of risk factors for retinopathy and nephropathy in diabetes. Diabetes 1980; 29: 501–8.PubMedGoogle Scholar
  23. 23.
    Bullard DJ, Molton LJ III, Dwyer MS, Trautmann JC, Chu C-P, O'Fallon WM, Palumbo PJ. Risk factors for diabetic retinopathy: a population-based study in Rochester, Minnesota. Diabetes Care 1986; 9: 334–42.Google Scholar
  24. 24.
    Klein R, Klein BEK, Moss Se, Davis MD, DeMets DL. The Wisconsin epidemiolo study of diabetic retinopathy, X: four-year incidence and progression of diabetic retino thy when age at diagnosis is 30 years or more. Arch Ophthalmol 1989; 107: 244–9.PubMedGoogle Scholar
  25. 25.
    Lee ET, Lee VS, Lu M, Russell D. Development of proliferative retinopathy in NIDD Diabetes 1992; 41: 359–67.PubMedGoogle Scholar
  26. 26.
    Lee, ET, Lee VS, Kingsley RM, Lu M, Russell D, Asal NR, Wilkinson CP, Bradt RH. Diabetic retinopathy in Oklahoma Indians with NIDDM: incidence and risk factor Diabetes Care 1992; 15: 1620–7.PubMedGoogle Scholar
  27. 27.
    Chen M-S, Kao C-S, Chang C-J, Wu T-J, Fu C-C, Chen C-J, Tai T-Y. Prevalence i risk factors of diabetic retinopathy among non insulin-dependent diabetic subjects. J Ophthalmol 1992; 114: 723–30.Google Scholar
  28. 28.
    Heding LG, Rasmussen SM. Human C-peptide in normal and diabetic subjects. D betologia 1975; 11: 201–6.Google Scholar
  29. 29.
    Madsbad S, Krarup T, McNair P, Christiansen C, Faber OK, Transbøl I, Binder Practical clinical value of the C-peptide response to glucagon stimulation in the cho of treatment in diabetes mellitus. Acta Med Scand 1981; 210: 153–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Welborn TA, Garcia-Webb P, Bonser AM. Basal C-peptide in the discrimination of type I from type II diabetes. Diabetes Care 1981; 4: 616–9.Google Scholar
  31. 31.
    Koskinen P, Viikari J, Irjala K, Kalhola H-L, Seppälä P C-peptide determination in choice of treatment in diabetes mellitus. Scand J Clin Lab Invest 1985; 45: 589–97.PubMedCrossRefGoogle Scholar
  32. 32.
    Heckenlively JR. RP cone-rod degeneration. Trans Am Ophthalmol Soc 1987; 85: 43–70.Google Scholar
  33. 33.
    Atherton A, Hill DW, Keen S, Young S, Edwards EJ. The effect of acute hyperglycaer on the retinal circulation of the normal cat. Diabetologia 1980; 18: 233–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Grunwald JE, Riva CE, Martin DB, Quint AR, Epstein PA. Effect of an insulin-induced decrease in blood glucose on the human diabetic retinal circulation. Ophthalmolo 1987; 94: 1614–20.Google Scholar
  35. 35.
    Sullivan PM, Davies GE, Caldwell G, Morris AC, Kohner EM. Retinal blood flow during hyperglycemia: a laser Doppler velocimetry study. Invest Ophthalmol, Vis Sci 1990; 3 2041–5.Google Scholar
  36. 36.
    Sinclair SH. Macular retinal capillary hemodynamics in diabetic patients. Ophthalmology 1991; 98: 1580–6.PubMedGoogle Scholar
  37. 37.
    Arend O, Wolf S, Jung F, Bertram B, Pöstgens H, Toonen H, Reim M. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis perifoveal, capillary network. Br J Ophthalmol 1991: 75: 514–8.PubMedGoogle Scholar
  38. 38.
    Hidayat AA, Fine BS. Diabetic choroidopathy: light and electron microscopic observations of seven cases. Ophthalmology 1985; 92: 512–22.PubMedGoogle Scholar
  39. 39.
    Zaharia M, Olivier P, Lafond G, Blondeau P, Brunette JR. Lobular delayed choroic perfusion as an early angiographic sign of diabetic retinopathy: a preliminary report. C J Ophthalmol 1987; 22: 257–61.Google Scholar
  40. 40.
    Elsner AE, Burns SA, Lobes LA, Jr, Doft BH. Cone photopigment bleaching abnomalitis in diabetes. Invest Ophthalmol Vis Sci 1987; 28: 718–24.PubMedGoogle Scholar
  41. 41.
    Birch DG, Fish GE. Focal, cone electroretinograms: aging and macular disease, D Ophthalmol 1988; 69: 211–20.CrossRefGoogle Scholar
  42. 42.
    Frost-Larsen K, Christiansen JS, Parving H-H. The effect of strict short-term metabolism control on retinal nervous system abnormalities in newly diagnosed type 1 (insul dependent) diabetic patients. Diabetologia 1983; 24: 207–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Harrad RA, Cockram CS, Plumb AP, Stone S, Fenwick P, Sonksen PH. The effect hypoglycemia on visual function: a clinical and electrophysical study. Clin Sci 1985; 6 673–9.Google Scholar
  44. 44.
    Kim S-Y, Nao-i N, Honda Y. Effects of glucose and fructose added to the intraocul irrigating solutions on the rabbit ERG in vitro. Meta Pediatr Syst Ophthalmol 1987; 1 14–7.Google Scholar
  45. 45.
    Segawa M, Hirata Y, Fujimori S, Okada K. The development of electroretinogram abnormalities and the possible role of polyolol pathway activity in diabetic hyperglycemia and galactosemia. Metab Clin Exp 1988; 37: 454–60.PubMedGoogle Scholar
  46. 46.
    Macaluso C, Onoe S, Niemeyer G. Changes in glucose level affect rod function more than cone function in the isolated, perfused cat eye. Invest Ophthalmol Vis Sci 1992; 33: 2798–808.PubMedGoogle Scholar
  47. 47.
    Sannita WG, Balestra V, DiBon G, Hassan KM, Rosadini G. Placebo effects in standard human neuropharmacological studies: effects, of physiological variations of blood glucose ammonia concentration on the electrophysiology of the visual system. Neuropsychology 1992;25:49–60.Google Scholar
  48. 48.
    Skrandies W, Heinrich H. Differential effects of mild hypoglycemia on proximal and distal retinal structures in man as revealed by electroretiinography. Neurosc Lett 1992; 134: 165–8.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Micheline C. Deschênes
    • 1
  • Stuart G. Coupland
    • 1
    • 2
  • Stuart A. Ross
    • 3
  • Gordon H. Fick
    • 4
  1. 1.Visual Electrodiagnostic Research UnitUniversity of CalgaryCanada
  2. 2.Departments of Surgery and Clinical NeurosciencesUniversity of CalgaryCanada
  3. 3.Department of MedicineUniversity of CalgaryCanada
  4. 4.Department of Community Health SciencesUniversity of CalgaryCanada

Personalised recommendations