, Volume 6, Issue 1, pp 1–13 | Cite as

On Lovász’ lattice reduction and the nearest lattice point problem

  • L. Babai


Answering a question of Vera Sós, we show how Lovász’ lattice reduction can be used to find a point of a given lattice, nearest within a factor ofc d (c = const.) to a given point in R d . We prove that each of two straightforward fast heuristic procedures achieves this goal when applied to a lattice given by a Lovász-reduced basis. The verification of one of them requires proving a geometric feature of Lovász-reduced bases: ac 1 d lower bound on the angle between any member of the basis and the hyperplane generated by the other members, wherec 1 = √2/3.

As an application, we obtain a solution to the nonhomogeneous simultaneous diophantine approximation problem, optimal within a factor ofC d .

In another application, we improve the Grötschel-Lovász-Schrijver version of H. W. Lenstra’s integer linear programming algorithm.

The algorithms, when applied to rational input vectors, run in polynomial time.

AMS subject classification (1980)

68 C 25 10 F 10 10 F 15 90 C 10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Adleman, On breaking the iterated Merkle—Hellman public key cryptosystem,Proc. 15th ACM Symp. on Theory of Computing, Boston (1983), 402–412.Google Scholar
  2. [2]
    J. W. S. Cassels,An introduction to the geometry of numbers, Springer, New York, (1971).zbMATHGoogle Scholar
  3. [3]
    P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a lattice,Rep. MI/UVA 81-04, Amsterdam (1981).Google Scholar
  4. [4]
    M. Grötschel, L. Lovász andA. Schrijver, The ellipsoid method and its consequences in combinatorial optimization,Combinatorica 1 (1981), 186–197.Google Scholar
  5. [5]
    M. Grötschel, L. Lovász andA. Schrijver, Geometric methods in combinatorial optimization, in: Progress in Combinatorial Optimization (W. R. Pulleyblank, ed.),Proc. Silver Jubilee Conf. on Comb., Univ. Waterloo, Vol. 1, 1982, Acad. Press, N. Y. (1984), 167–183.Google Scholar
  6. [6]
    B. Helfrich, An algorithm to construct Minkowski-reduced lattice-bases, in:Proc. 2nd Ann. Symp. on Theoretical Aspects of Comp. Sci. (STACS 85),Springer Lect. Notes. in Comp. Sci. 182 (1985), 173–179.MathSciNetCrossRefGoogle Scholar
  7. [7]
    R. Kannan, Improved algorithms for integer programming and related lattice problems,in: Proc. 15th ACM Symp. on Theory of Comp., (1983), 193–206.Google Scholar
  8. [8]
    R. Kannan, A. K. Lenstra andL. Lovász, Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers,in: Proc. 16th Ann. ACM Symp. on Theory of Computing, Washington, D. C. (1984), 191–200.Google Scholar
  9. [9]
    J. Lagarias andA. M. Odlyzko, Solving low density subset sum problems,in: Proc. 24th IEEE Symp. on Foundations of Comp. Sci., (1983), 1–10.Google Scholar
  10. [10]
    A. K. Lenstra, Lattices and factorization of polynomials,Report IW 190/81, Mathematisch Centrum, Amsterdam (1981).Google Scholar
  11. [11]
    A. K. Lenstra, H. W. Lenstra, Jr. andL. Lovász, Factoring polynomials with rational coefficients,Math. Ann. 261 (1982), 515–534.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    H. W. Lenstra, Jr., Integer programming with a fixed number of variables.Math. Oper. Res. 8 (1983), 538–548.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    L. Lovász,private communications, 1981–1982.Google Scholar
  14. [14]
    A. M. Odlyzko andH. te Riele, Disproof of the Mertens conjecture,J. reine angew. Math. 357 (1985), 138–160.zbMATHMathSciNetGoogle Scholar
  15. [15]
    A. Shamir, A polynomial time algorithm for breaking the Merkle—Hellman cryptosystem,Proc. 23rd IEEE Symp. on Foundations of Comp. Sci., Chicago, Illinois (1982), 145–152.Google Scholar
  16. [16]
    C. P. Schnorr, A hierarchy of polynomial time basis reduction algorithms,in: Theory of Algorithms, Proc. Conf. Pécs (Hungary) 1984,Coll. Soc. J. Bolyai, to appear.Google Scholar
  17. [17]
    Vera T. Sós, On the theory of diophantine approximation II,Acta Math. Acad. Sci. Hung. (1958), 229–241.Google Scholar
  18. [18]
    Vera T. Sós, Irregularities of partitions: Ramsey theory, uniform distribution,in: Surveys in Combinatorics, Proc. 9th British Combinatorial Conference, 1983 (E. Keith Lloyd, ed.) London Math. Soc. Lect. Notes 82, Cambridge Univ. Press 1983.Google Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • L. Babai
    • 1
    • 2
  1. 1.Department of AlgebraEötvös UniversityBudapestHungary
  2. 2.Department of Computer ScienceThe University of ChicagoChicago

Personalised recommendations