Advertisement

Combinatorica

, Volume 6, Issue 3, pp 221–233 | Cite as

Packing and covering a tree by subtrees

  • I. Bárány
  • L. A. Wolsey
  • J. Edmonds
Article

Abstract

For two polyhedra associated with packing subtrees of a tree, the structure of the vertices is described, and efficient algorithms are given for optimisation over the polyhedra. For the related problem of covering a tree by subtrees, a reduction to a packing problem, and an efficient algorithm are presented when the family of trees is “fork-free”.

AMS subject classification (1980)

68 E 10 05 C 05 05 B 40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Bárány, T. J. Van Roy, andL. A. Wolsey, Uncapacitated Lot-Sizing: The Convex Hull-of Solutions,Mathematical Programming Study,22 (1984), 32–43.zbMATHGoogle Scholar
  2. [2]
    A. Frank, Some Polynomial Algorithms for Certain Graphs and Hypergraphs,Proceedings of the 5th British Combinatorial Conference, Congressus Numerantium XV,Utilitas Math., Winnipeg (1976).Google Scholar
  3. [3]
    F. Gavril, The intersection Graphs of Subtrees in Trees are Exactly the Chordal Graphs,Journal of Combinatorial Theory, B 16, (1974), 47–56.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. C. Golumbic,Algorithmic Graph Theory and Perfect Graphs, Academic Press, (1980).Google Scholar
  5. [5]
    H. Gröflin andT. M. Liebling, Connected and Alternating Vectors: Polyhedra and Algorithms,Mathematical Programming,20 (1981), 233–244.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. J. Hoffman, A. W. J. Kolen andM. Sakarovitch, Totally Balanced and Greedy Matrices,Prepring BW 165/82,Stiching Mathematisch Centrum, Amsterdam, (1982).Google Scholar
  7. [7]
    A. W. J. Kolen, Solving Covering Problems and the Uncapacitated Plant Location Problem on Trees,Preprint BW 163/82,Stichting Mathematisch Centrum, Amsterdam (1982).Google Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • I. Bárány
    • 1
  • L. A. Wolsey
    • 2
  • J. Edmonds
    • 3
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesHungary
  2. 2.Center Op. Res, EconometricsUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Dept. of Combinatorics and OptimizationUniversity of WaterlooOntarioCanada

Personalised recommendations