, Volume 3, Issue 1, pp 83–93 | Cite as

On a class of degenerate extremal graph problems

  • Ralph J. Faudree
  • Miklós Simonovits


Given a class ℒ of (so called “forbidden”) graphs, ex (n, ℒ) denotes the maximum number of edges a graphG n of ordern can have without containing subgraphs from ℒ. If ℒ contains bipartite graphs, then ex (n, ℒ)=O(n 2−c ) for somec>0, and the above problem is calleddegenerate. One important degenerate extremal problem is the case whenC 2k , a cycle of 2k vertices, is forbidden. According to a theorem of P. Erdős, generalized by A. J. Bondy and M. Simonovits [32, ex (n, {C 2k })=O(n 1+1/k ). In this paper we shall generalize this result and investigate some related questions.

AMS subject classification (1980)

05 C 35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Benson, Minimal regular graphs of girth eight and twelve,Canad. J. Math. 18 (1966), 1091–1094.zbMATHMathSciNetGoogle Scholar
  2. [2]
    B. Bollobás,Extremal Graph Theory, Academic Press, (1978) p. XVII.Google Scholar
  3. [3]
    J. A. Bondy andM. Simonovits, Cycles of even length in graphs,J. Combin. Theory,16 B (1974), 97–105.MathSciNetGoogle Scholar
  4. [4]
    W. G. Brown, On graphs that do not contain a Thomsen graph,Canad. Math. Bull. 9 (1966), 281–185.zbMATHMathSciNetGoogle Scholar
  5. [5]
    W. G. Brown, P. Erdős andM. Simonovits, Extremal problems for directed graphs,J. Combin Theory,15/1B (1973), 77–93.zbMATHGoogle Scholar
  6. [6]
    P. Erdős, Some Recent results on extremal problems in graph theory,Theory of Graphs, Intern. Symp. Rome, (1966), 118–123.Google Scholar
  7. [7]
    P. Erdős, On some new inequalities concerning extremal properties of graphs,Theory of Graphs, Proc. Coll. Tihany (1966), 77–81.Google Scholar
  8. [8]
    P. Erdős, On sequences of integers no one of which divides the product of two other related problems,Mitt. Forschunginst. Math. u. Mech. Tomsk 2 (1938), 74–82.Google Scholar
  9. [9]
    P. Erdős, Problems and result in combinatorial analysis,Teorice Combinatorie Proc. Coll. Intern. Roma, settembre 1973.Google Scholar
  10. [10]
    P. Erdős andA. Rényi, On the evolution of random graphs,Magyar Tud. Akad. Mat. Kut. Int. Kőzl. 5 (1960), 17–61.Google Scholar
  11. [11]
    P. Erdős, A. Rényi andV. T. Sós, On a problem of graph theory,Studia Sci. Math. Hungar. 1 (1966), 215–235.MathSciNetGoogle Scholar
  12. [12]
    P. Erdős andM. Simonovits, A limit theorem in graph theory,Studia Sci. Math. Hungar. 1 (1966), 51–57.MathSciNetGoogle Scholar
  13. [13]
    P. Erdős andM. Simonovits, Some extremal problems in graph theory,Coll. Math. Soc. J. Bolyai 4 (1969), 377–390.Google Scholar
  14. [14]
    Hylten-Cavallius. On a combinatorial problem,Coll. Math. 6 (1958), 59–65.zbMATHMathSciNetGoogle Scholar
  15. [15]
    T. Kővári, T. Sós andP. Turán, On a problem of Zarankiewicz,Coll. Math. 3 (1954), 50–57.Google Scholar
  16. [16]
    M. Simonovits, A method for solving extremal problems in graph theory,Theory of Graphs Proc. Coll. Tihany, (1966), 279–319.Google Scholar
  17. [17]
    M. Simonovits, Paul Turán’s influence on graph theory,J. Graph Theory,2 (1977).Google Scholar
  18. [18]
    R. Singleton, On minimal graphs of maximum even girth,J. Combin. Theory,1 (1966), 306–332.zbMATHMathSciNetGoogle Scholar
  19. [19]
    P. Turán, On an extremal problem in graph theory,Mat. Fiz. Lapok 48 (1941), 436–452zbMATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1983

Authors and Affiliations

  • Ralph J. Faudree
    • 1
    • 2
  • Miklós Simonovits
    • 3
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesHungary
  2. 2.Department of MathematicsMemphis State UniversityMemphisUSA
  3. 3.Department of Analysis IEötvös UniversityBudapestHungary

Personalised recommendations