Advertisement

Combinatorica

, Volume 1, Issue 3, pp 275–284 | Cite as

The splittance of a graph

  • Peter L. Hammer
  • Bruno Simeone
Article

Abstract

The splittance of an arbitrary graph is the minimum number of edges to be added or removed in order to produce a split graph (i.e. a graph whose vertex set can be partitioned into a clique and an independent set). The splittance is seen to depend only on the degree sequence of the graph, and an explicit formula for it is derived. This result allows to give a simple characterization of the degree sequences of split graphs. Worst cases for the splittance are determined for some classes of graphs (the class of all graphs, of all trees and of all planar graphs).

AMS subject classification (1980)

05 C 35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Berge,Graphes et Hypergraphes. Dunod, Paris, 1970.zbMATHGoogle Scholar
  2. [2]
    A. Bondy andU. S. R. Murty,Graph Theory with Applications, MacMillan, London, 1976.Google Scholar
  3. [3]
    V. Chvatal andP. L. Hammer, Aggregation of Inequalities in integer programming,Annals of Discrete Mathematics,1 (1977), 145–162.MathSciNetCrossRefGoogle Scholar
  4. [4]
    P. Erdős andT. Gallai, Graphen mit Punkten vorgeschriebenen Grades,Mat. Lapok,11 (1960), 264–274.Google Scholar
  5. [5]
    S. Földes andP. L. Hammer, On a class of matroid producing graphs,Coll. Math. Soc. J. Bolyai, Combinatorics, Budapest,18 (1978), 331–352.Google Scholar
  6. [6]
    S. Földes andP. L. Hammer, Split graphs,Proceedings of the 8th South-Eastern Conference on Combinatorics, Graph Theory and Computing, (1977), 311–315.Google Scholar
  7. [7]
    M. R. Garey, D. S. Johnson andL. Stockmeyer, Some simplified NP-complete Problems,Proc. 6th ACM Symp. on Theory of Computing, Seattle (1974).Google Scholar
  8. [8]
    P. L. Hammer, T. Ibaraki andB. Simeone, Threshold sequences,SIAM J. on Algebraic and Discrete Methods,2 (1981), 39–49.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. B. Owens, On the Planarity of Regular Incidence Sequences,J. of Comb. Theory (B),11 (1971), 201–212.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    U. N. Peled, Matroidal Graphs,Discr. Math.,20 (1977), 263–286.MathSciNetGoogle Scholar
  11. [11]
    H. J. Ryser,Combinatorial Mathematics, Carus Monographs, American Mathematical Society (1963).Google Scholar
  12. [12]
    E. F. Schmeichel andS. L. Hakimi, On planar graphical degree sequences,SIAM J. of Appl. Math.,32 (1977), 598–609.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • Peter L. Hammer
    • 1
    • 2
  • Bruno Simeone
    • 1
    • 2
  1. 1.University of WaterlooOnt.Canada
  2. 2.Instituto per le Applicazioni del CalcoloRomeItaly

Personalised recommendations