Advertisement

Combinatorica

, Volume 1, Issue 3, pp 257–262 | Cite as

Hermite polynomials and a duality relation for matchings polynomials

  • C. D. Godsil
Article

Abstract

LetG be a graph onn vertices. Ak-matching inG is a set ofk independent edges. If 2k=n then ak-matching is called perfect. The number ofk-matchings inG isp(G, k). (We setp(G, 0)=1). The matchings polynomial ofG is
$$\alpha (G,x) = \sum\limits_{k = 0}^{[n/2]} {( - 1)^k p(G,k)x^{n - 2k} } $$
Our main result is that the number of perfect matchings in the complement ofG is equal to
$$(2\pi )^{ - 1/2} \int\limits_{ - \infty }^\infty {\alpha (G,x)} \exp ( - x^2 /2)dx.$$
(1)
LetK m be the complete graph onm vertices. Then α(K m ,x) is the Hermite polynomial He n (x) of degreen. Using (1) we show, amongst other results, that
$$\alpha (\bar G,x) = \sum\limits_{k = 0}^{[n/2]} {p(G,k)} \alpha (K_{n - 2k} ,x).$$

AMS subject classification (1980)

05 A 15 05 C 99, 33 A 99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Azor, J. Gillis andJ. D. Victor, Combinatorial applications of Hermite polynomials, manuscript.Google Scholar
  2. [2]
    A. Erdélyi, W. Magnus, F. Oberhettinger andF. G. Tricomi,Higher Transcendental Functions (Bateman manuscript project), McGraw-Hill, 1953.Google Scholar
  3. [3]
    C. D. Godsil andI. Gutman, On the theory of the matching polynomial,J. Graph Theory,5 (1981), 137–144.zbMATHMathSciNetGoogle Scholar
  4. [4]
    O. J. Heilmann andE. H. Lieb, Theory of monomer-dimer systems,Comm. Math. Physics,25 (1972), 190–232.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. A. Joni andG-C. Rota, A vector space analog of permutations with restricted position,J. Combinatorial Theory, Series A,29 (1980), 59–73.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L. Lovász,Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.zbMATHGoogle Scholar
  7. [7]
    J. Riordan,An introduction to Combinatorial Analysis, Wiley, 1958.Google Scholar
  8. [8]
    T. Zaslavsky, Complementary matching vectors and the uniform matching extension property,Europ. J. Comb. 2 (1981), 91–103.zbMATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • C. D. Godsil
    • 1
  1. 1.Institut für Mathematik und Angewandte GeometrieMontanuniversität LeobenAustria

Personalised recommendations