Combinatorica

, Volume 1, Issue 3, pp 257–262

Hermite polynomials and a duality relation for matchings polynomials

  • C. D. Godsil
Article

DOI: 10.1007/BF02579331

Cite this article as:
Godsil, C.D. Combinatorica (1981) 1: 257. doi:10.1007/BF02579331

Abstract

LetG be a graph onn vertices. Ak-matching inG is a set ofk independent edges. If 2k=n then ak-matching is called perfect. The number ofk-matchings inG isp(G, k). (We setp(G, 0)=1). The matchings polynomial ofG is
$$\alpha (G,x) = \sum\limits_{k = 0}^{[n/2]} {( - 1)^k p(G,k)x^{n - 2k} } $$
Our main result is that the number of perfect matchings in the complement ofG is equal to
$$(2\pi )^{ - 1/2} \int\limits_{ - \infty }^\infty {\alpha (G,x)} \exp ( - x^2 /2)dx.$$
(1)
LetKm be the complete graph onm vertices. Then α(Km,x) is the Hermite polynomial Hen (x) of degreen. Using (1) we show, amongst other results, that
$$\alpha (\bar G,x) = \sum\limits_{k = 0}^{[n/2]} {p(G,k)} \alpha (K_{n - 2k} ,x).$$

AMS subject classification (1980)

05 A 15 05 C 99, 33 A 99 

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • C. D. Godsil
    • 1
  1. 1.Institut für Mathematik und Angewandte GeometrieMontanuniversität LeobenAustria

Personalised recommendations