, Volume 1, Issue 3, pp 225–231

Every large set of equidistant (0, +1, −1)-vectors forms a sunflower

  • M. Deza
  • P. Frankl


A theorem of Deza asserts that ifH1, ...,Hm ares-sets any pair of which intersects in exactlyd elements and ifms2s+2, then theHi form aΔ-system, i.e.\(\left| {\bigcap\limits_{i = 1}^m {H_i } } \right| = d\). In other words, every large equidistant (0, 1)-code of constant weight is trivial. We give a (0, +1, −1) analogue of this theorem.

AMS subject classification (1980)

05 C 65 05 C 35, 05 B 25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Delsarte, J-M. Goethals andJ. J. Seidel, Spherical codes and designs,Geometriae Dedicata6 (1977) 363–368.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Deza, Une propriété extrémale des plans projectifs finis dans une classe de codes equidistants,Discrete Math.6 (1973) 343–352.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Deza, R. C. Mullin andS. A. Vanstone, Recent results on (r, λ)-designs and related configurations,to appear.Google Scholar
  4. [4]
    A. V. Geramita andJ. Seberry,Orthogonal designs, Marcel Dekker Inc., New York and Basel, 1979.MATHGoogle Scholar
  5. [5]
    A. J. Hoffman, private communication.Google Scholar
  6. [6]
    J. H. van Lint, A theorem on equidistant codes,Discrete Math.6 (1973) 353–358.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    I. J. Schoenberg, Metric spaces and positive definite functions,Trans. Amer. Math. Soc.44 (1938) 522–536.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • M. Deza
    • 1
  • P. Frankl
    • 1
  1. 1.C. N. R. S. Paris

Personalised recommendations