Combinatorica

, Volume 7, Issue 4, pp 343–355 | Cite as

Expanders obtained from affine transformations

  • Shuji Jimbo
  • Akira Maruoka
Article

Abstract

A bipartite graphG=(U, V, E) is an (n, k, δ, α) expander if |U|=|V|=n, |E|≦kn, and for anyXU with |X|≦αn, |ΓG(X)|≧(1+δ(1−|X|/n)) |X|, whereΓG(X) is the set of nodes inV connected to nodes inX with edges inE. We show, using relatively elementary analysis in linear algebra, that the problem of estimating the coefficientδ of a bipartite graph is reduced to that of estimating the second largest eigenvalue of a matrix related to the graph. In particular, we consider the case where the bipartite graphs are defined from affine transformations, and obtain some general results on estimating the eigenvalues of the matrix by using the discrete Fourier transform. These results are then used to estimate the expanding coefficients of bipartite graphs obtained from two-dimensional affine transformations and those obtained from one-dimensional ones.

AMS subject classification (1980)

68 A 20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Alon, Eigenvalues and expanders,Combinatorica 6 (1986), 83–96.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    N. Alon andV. D. Milman, Eigenvalues, expanders and superconcentrators,Proc. 25th Ann. IEEE Symp. on Found. of Comput. Sci., (1984), 320–322.Google Scholar
  3. [3]
    N. Alon, Z. Galil andV. D. Milman, Better expanders and superconcentrators”, to appear inJ. of Algorithms.Google Scholar
  4. [4]
    L. A. Bassalygo, Asymptotically optimal switching ciruits,Problems of Infor. Trans. 17 (1981) 206–211.MATHGoogle Scholar
  5. [5]
    F. R. K. Chung, On concentrators, superconcentrators, and nonblocking networks,Bell System Tech. J.,58 (1979), 1765–1777.MATHMathSciNetGoogle Scholar
  6. [6]
    O. Gabber andZ. Galil, Explicit constructions of linear-sized superconcentrators,J. Comput. System Sci.,22 (1981), 407–420.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Jimbo andA. Maruoka, Expanders obtained from affine transformations,Proc. 17th Ann. ACM Symp. on Theory of Computing, (1985), 88–97.Google Scholar
  8. [8]
    M. Klawe, Nonexistence of one-dimensional expanding graphs,Proc. 22nd Ann. Symp. on Found. of Comput. Sci., (1981), 109–113.Google Scholar
  9. [9]
    M. Klawe, Limitations on explicit constructions of expanding graphs,SIAM J. Comput. 13 (1984), 156–166.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. A. Margulis, Explicit construction of concentrators,Prob. Info. Trans.,9 (1975), 325–332.MathSciNetGoogle Scholar
  11. [11]
    N. Pippenger, Superconcentrators,SIAM J. Comput. 6 (1977), 298–304.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    W. Maass, Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines,Trans. AMS. 292 (1985), 675–693.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • Shuji Jimbo
    • 1
  • Akira Maruoka
    • 2
  1. 1.Oki Electric IndustryTokyoJapan
  2. 2.Faculty of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations