, Volume 2, Issue 2, pp 193–201 | Cite as

Monotone paths in ordered graphs

  • Vladimír Müller
  • Vojtěch Rödl


LetV fin andE fin resp. denote the classes of graphsG with the property that no matter how we label the vertices (edges, resp.) ofG by members of a linearly ordered set, there will exist paths of arbitrary finite lengths with monotonically increasing labels. The classesV inf andE inf are defined similarly by requiring the existence of an infinite path with increasing labels. We proveE infV infV finE fin. Finally we consider labellings by positive integers and characterize the class corresponding toV inf.

AMS subject classification (1980)

05 C 55 05 C 38 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. G. de Bruijn andP. Erdős, A color problem for infinite graphs and a problem in the theory of relations,Indag. Math. 13 (1951), 369–373.Google Scholar
  2. [2]
    T. Gallai, On directed paths and circuits, in:Theory of Graphs (P. Erdös and G. Katona, eds.), Academic Press 1968.Google Scholar
  3. [3]
    R. L. Graham andD. J. Kleitman, Increasing paths in edge ordered graphs,Periodica Mathematica Hungarica 3 (1973), 141–148.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    F. P. Ramsey, On a problem of formal logic,Proc. Lond. Math. Soc. (2)30 (1930), 264–286.CrossRefGoogle Scholar
  5. [5]
    V. Rödl, Generalization of the Ramsey Theorem and Dimension of Graphs, (in Czech),Thesis, Charles University, Prague (1973).Google Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • Vladimír Müller
    • 1
  • Vojtěch Rödl
    • 2
  1. 1.Mathematical Institute of the Czechoslovak Academy of SciencesPraha ICzechoslovakia
  2. 2.Department of MathematicsFaculty of Nuclear EngineeringPraha ICzechoslovakia

Personalised recommendations