Advertisement

Combinatorica

, Volume 2, Issue 2, pp 125–134 | Cite as

The diameter of random regular graphs

  • Béla Bollobás
  • W. Fernandez de la Vega
Article

Abstract

We give asymptotic upper and lower bounds for the diameter of almost everyr-regular graph onn vertices (n → ∞).

AMS subject classification (1980)

05 C 99 60 C 05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. A. Bender andE. R. Canfield, The asymptotic number of labelled graphs with given degree sequences,J. Combinatorial Theory (A) 24 (1978) 296–307.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    B. Bollobás,Extremal Graph Theory, Academic Press, London, New York and San Francisco, 1978.zbMATHGoogle Scholar
  3. [3]
    B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs,Europ. J. Combinatorics 1 (1980). 311–316.zbMATHGoogle Scholar
  4. [4]
    B. Bollobás, The diameter of random graphs,Trans. Amer. Math. Soc. 267 (1981) 41–52.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    V. Klee andD. Larman, Diameters of random graphs,Canad. J. Math. 33 (1981) 618–640.zbMATHMathSciNetGoogle Scholar
  6. [6]
    A. D. Korshunov, On the diameter of random graphs,Soviet Mat. Doklady 12 (1971) 302–305.zbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • Béla Bollobás
    • 1
  • W. Fernandez de la Vega
    • 2
  1. 1.Dept. of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeEngland
  2. 2.Laboratoire de Recherche en Informatique ERA 452, Bât. 490Université Paris SudOrsayFrance

Personalised recommendations