Advertisement

Combinatorica

, Volume 3, Issue 2, pp 167–176 | Cite as

On unavoidable graphs

  • F. R. K. Chung
  • P. Erdős
Article

Abstract

How many edges can be in a graph which is forced to be contained in every graph onn vertices ande edges? In this paper we obtain bounds which are in many cases asymptotically best possible.

AMS subject classification (1980)

05 C 35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Babai, F. R. K. Chung, P. Erdős, R. L. Graham andJ. Spencer, On graphs which contain all sparse graphs,Annals of Discrete Math.,12 (1982), 21–26.zbMATHGoogle Scholar
  2. [2]
    F. R. K. Chung andR. L. Graham, On graphs which contain all small trees,J. Comb. Th. (B),24 (1978), 14–23.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    F. R. K. Chung, R. L. Graham andN. Pippenger, On graphs which contain all small trees II,Colloquia Math. Soc. János Bolyai, Keszthely, Hungary (1976), 213–223.Google Scholar
  4. [4]
    F. R. K. Chung andR. L. Graham, On universal graphs for spanning trees.Proc. of London Math. Soc. 27 (1983), 203–212.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. R. K. Chung andR. L. Graham, On universal graphs,Annals of the New York Academy of Sciences,319 (1970), 136–140.CrossRefMathSciNetGoogle Scholar
  6. [6]
    F. R. K. Chung, R. L. Graham andJ. Shearer, Universal caterpillars,J. Comb. Th. (B),31 (1981), 348–355.zbMATHCrossRefGoogle Scholar
  7. [7]
    F. R. K. Chung, R. L. Graham andD. Coppersmith, On trees which contain all small trees,The Theory and Applications of Graphs (ed. G. Chartrand) John Wiley and Sons, 1981, 265–272.Google Scholar
  8. [8]
    F. R. K. Chung, R. L. Graham andP. Erdős, Minimal decomposition of graphs into mutually isomorphic subgraphs, Combinatorica,1 (1981), 13–24.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Erdős andJ. Spencer,Probabilistic Methods in Combinatorics, Akadémiai Kiadó, Budapest, 1974.Google Scholar
  10. [10]
    P. Turán, Egy gráfelméleti szélsőértékfeladatról.Mat.-Fiz. Lapok 48 (1941), 436–452.zbMATHMathSciNetGoogle Scholar
  11. [11]
    P. Turán, On the theory of graphs,Coll. Math. 3 (1954), 19–30.zbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1983

Authors and Affiliations

  • F. R. K. Chung
    • 1
  • P. Erdős
    • 2
  1. 1.Bell LaboratoriesMurray HillU.S.A.
  2. 2.Mathematical Institute of the Hungarian Academy of SciencesHungary

Personalised recommendations