Advertisement

Combinatorica

, Volume 1, Issue 2, pp 141–143 | Cite as

On the conjecture of hajós

  • Paul Erdős
  • Siemion Fajtlowicz
Article

Abstract

Hajós conjectured that everys-chromatic graph contains a subdivision ofK s, the complete graph ons vertices. Catlin disproved this conjecture. We prove that almost all graphs are counter-examles in a very strong sense.

AMS (1980) subject classification

05 C 15 60 C 05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. E. Appel andW. Haken, The existence of unavoidable sets of geographically good configurations,Illinois Journal of Mathematics, vol.20, 218–297.Google Scholar
  2. [2]
    P. Catlin, Hajós graph-colouring conjecture: variatons and counterexamples,Journal of Combinatorial Theory, Series B (to appear in 1979).Google Scholar
  3. [3]
    G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs,Journal of London Mathematical Society,27 (1952), 85–92.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    P. Erdős, Some extremal problems on families of graphs and related problems, Springer-Verlag,Lecture Notes in Mathematics,686, 13–21.Google Scholar
  5. [5]
    P. Erdős, Some remarks on chromatic graphs,Coll. Math. XVI (1967) 103–106.Google Scholar
  6. [6]
    P. Erdős, Some remarks on graph theory,Bulletin of American Mathematical Society,53 (1947), 292–299.CrossRefGoogle Scholar
  7. [7]
    P. Erdős andA. Hajnal, On complete topological subaraphs of certain graphs,Ann. Univ. Sci. Budapest,7 (1969), 193–199.Google Scholar
  8. [8]
    S. Fajtlowicz, On the size independent sets in graphs,Proceedings of the IX Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Math, Congress. Num. XXI, (1978) 269–274.Google Scholar
  9. [9]
    H. Hadwiger, Über eine Klassifikationen der Streckenkomplexe,Vierteljschr. Naturforsch. Ges. Zürich,88 (1943), 133–143.MathSciNetGoogle Scholar
  10. [10]
    G. Hajós, Über eine Konstruktion nichtn-Farbbarer Graphen,Wiss. Z. Martin Luther Univ. Halle — Wittenberg Math. Naturwiss. Reihe 10 (1961), 116–117.Google Scholar
  11. [11]
    W. Tutte, Colouring Problems,Mathematical Intelligencer 1 (1978), 72–75.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • Paul Erdős
    • 1
  • Siemion Fajtlowicz
    • 2
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of MathematicsUniversity of HoustonHoustonU.S.A.

Personalised recommendations