Advertisement

Combinatorica

, Volume 2, Issue 3, pp 289–295 | Cite as

On Ramsey—Turán type theorems for hypergraphs

  • P. Erdős
  • Vera T. Sós
Article

Abstract

LetH r be anr-uniform hypergraph. Letg=g(n;H r ) be the minimal integer so that anyr-uniform hypergraph onn vertices and more thang edges contains a subgraph isomorphic toH r . Lete =f(n;H r ,εn) denote the minimal integer such that everyr-uniform hypergraph onn vertices with more thane edges and with no independent set ofεn vertices contains a subgraph isomorphic toH r .

We show that ifr>2 andH r is e.g. a complete graph then
$$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r )$$
while for someH r with\(\mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r ) \ne 0\)
$$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = 0$$
. This is in strong contrast with the situation in caser=2. Some other theorems and many unsolved problems are stated.

AMS subject classification (1980)

05 C 65 05 C 35 05 C 55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Bollobás andP. Erdős, On a Ramsey—Turán type problem,J. Comb. Th. Ser. B 21 (1976) 166–168.zbMATHCrossRefGoogle Scholar
  2. [2]
    P. Erdős, A. Hajnal, V. T. Sós andE. Szemerédi, More results on Ramsey—Turán type problems,Combinatorica,3 (1) (1983).Google Scholar
  3. [3]
    P. Erdős andA. Hajnal, On chromatic number of graphs and set systems,Acta Math. Acad. Sci. Hungar. 17 (1966) 61–99.CrossRefMathSciNetGoogle Scholar
  4. [4]
    P. Erdős, On extremal problems of graphs and generalized graphs,Israel J. Math. 2 (1964) 183–190.MathSciNetGoogle Scholar
  5. [5]
    P. Erdős andV. T. Sós, Some remarks on Ramsey’s and Turán’s theorem.Comb. Theory and Appl. (P. Erdős et al. eds.)Math. Coll. Soc. J. Bolyai 4 Balatonfüred (1969) 395–404.Google Scholar
  6. [6]
    P. Erdős andM. H. Stone, On the structure of linear graphs,Bull. Amer. Math. Soc. 52 (1946) 1087–1091.MathSciNetCrossRefGoogle Scholar
  7. [7]
    V. T. Sós, On extremal problems in graph theoryProc. Calgary Internat. Conf. on Comb. Structures (1969) 407–410.Google Scholar
  8. [8]
    E. Szemerédi, On graphs containing no complete subgraph with 4 vertices (in Hungarian),Mat. Lapok 23 (1972) 111–116.Google Scholar
  9. [9]
    P. Turán. Eine Extremalaufgabe aus der Graphentheorie (in Hungarian),Mat. Fiz. Lapok 48 (1941) 436–452.see also: On the theory of graphs,Colloquium Math. 3 (1954), 19–30.zbMATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • P. Erdős
    • 1
  • Vera T. Sós
    • 2
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Bell Laboratories Murray Hill, NJ 07974, U.S.A. and Dept of Analysis IEötvös UniversityBudapestHungary

Personalised recommendations