Combinatorica

, Volume 7, Issue 1, pp 1–22 | Cite as

The monotone circuit complexity of boolean functions

  • Noga Alon
  • Ravi B. Boppana
Article

Abstract

Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that cliques in graphs. In particular, Razborov showed that detecting cliques of sizes in a graphm vertices requires monotone circuits of size Ω(ms/(logm)2s) for fixeds, and sizemΩ(logm) form/4].

In this paper we modify the arguments of Razborov to obtain exponential lower bounds for circuits. In particular, detecting cliques of size (1/4) (m/logm)2/3 requires monotone circuits exp (Ω((m/logm)1/3)). For fixeds, any monotone circuit that detects cliques of sizes requiresm)s) AND gates. We show that even a very rough approximation of the maximum clique of a graph requires superpolynomial size monotone circuits, and give lower bounds for some Boolean functions. Our best lower bound for an NP function ofn variables is exp (Ω(n1/4 · (logn)1/2)), improving a recent result of exp (Ω(n1/8-ε)) due to Andreev.

AMS subject classification (1980)

68 E 10 68 C 25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [1]
    A. V. Aho, J. E. Hopcroft, andJ. D. Ullman,The Design and Analysis of Computer Algorithms, Addison—Wesley, Reading, 1974.MATHGoogle Scholar
  2. [2]
    A. E. Andreev, On a method for obtaining lower bounds for the complexity of individual monotone functions,Dokl. Ak. Nauk. SSSR 282 (1985), 1033–1037 (in Russian). English translation inSov. Math. Dokl. 31 (1985), 530–534.Google Scholar
  3. [3]
    P. A. Bloniarz,The complexity of monotone Boolean functions and an algorithm for finding shortest paths in a graph, Ph. D. Dissertation, Technical Report238, Laboratory for Computer Science, Massachusetts Institute of Technology, 1979.Google Scholar
  4. [4]
    N. Blum, A Boolean function requiring 3n network size,Theoretical Computer Science 28 (1984), 337–345.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. Chung andR. M. Karp,in: Open problems proposed at the NSF Conf. on Complexity Theory, Eugene, Oregon 1984,SIGACT News 16 (1984), 46.Google Scholar
  6. [6]
    P. Erdős andR. Rado, Intersection theorems for systems of sets,Journal of London Mathematical Society 35 (1960), 85–90.CrossRefGoogle Scholar
  7. [7]
    J. E. Hopcroft andR. M. Karp, Ann 5/2 algorithm for maximum matching in bipartite graphs,SIAM Journal on Computing 4 (1973), 225–231.CrossRefMathSciNetGoogle Scholar
  8. [8]
    K. Mehlhorn andZ. Galil, Monotone switching circuits and Boolean matrix product,Computing 16 (1976), 99–111.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Nešetřil andS. Poljak, On the complexity of the subgraph problem,CMUC 26 (1985), 415–419.Google Scholar
  10. [10]
    M. S. Paterson, Complexity of monotone networks for Boolean matrix products,Theoretical Computer Science 1 (1975), 13–20.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    V. R. Pratt, The power of negative thinking in multiplying Boolean matrices,SIAM Journal on Computing 4 (1974), 326–330.CrossRefMathSciNetGoogle Scholar
  12. [12]
    A. A. Razborov, Lower bounds for the monotone complexity of some Boolean functions,Dokl. Ak. Nauk. SSSR,281, (1985), 798–801 (in Russian). English translation in:Sov. Math. Dokl.,31 (1985), 354–357.MathSciNetGoogle Scholar
  13. [13]
    A. A. Razborov, Lower bounds on monotone network complexity of the logical permanent,Mat. Zametki,37 (1985), 887–900 (in Russian). English translation in:Math. Notes of the Academy of Sciences of the USSR 37 (1985), 485–493.MathSciNetGoogle Scholar
  14. [14]
    C. E. Shannon, The synthesis of two-terminal switching circuits,Bell System Technical Journal,28 (1949), 59–98.MathSciNetGoogle Scholar
  15. [15]
    S. Skyum andL. G. Valiant, A complexity theory based on Boolean algebra,Journal of the ACM,32:2 (1985), 484–502.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    J. Tiekenheinrich, A 4n-lower bound on the monotone network complexity of a one-output Boolean function,Information Processing Letters,18 (1984), 201–202.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    L. G. Valiant, Completeness classes in algebra,Proceedings of 11 th ACM Symposium on Theory of Computing, (1979), 249–261.Google Scholar
  18. [18]
    I. Wegener, Boolean functions whose monotone complexity is of sizen 2/logn, Theoretical Computer Science,21 (1982), 213–224.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • Noga Alon
    • 1
    • 2
  • Ravi B. Boppana
    • 3
  1. 1.Department of MathematicsTel Aviv UniversityTel AvivIsrael
  2. 2.IBM Almaden Research CenterSan JoseUSA
  3. 3.Laboratory for Computer ScienceMassachusetts Inst. of Tech.CambridgeUSA

Personalised recommendations